
Lesson 12: 

Surface Integrals and the Divergence 

Theorem (Gauss’ Theorem) 



Lesson 8: Measuring the Flow of a Vector 

Field ACROSS a Closed Curve 

C

b

a

C

Field(x,y) outerunitnormal ds

Field(x(t), y(t)) (y'(t), x'(t))dt

n(x,y)dx m(x,y)dy



  

  







Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ACROSS the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

m n
dx dy

x y

R

divField(x,y) dx dy 

 
 
 

m n
Let divField(x,y) .

x y
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Lesson 8 : The Flow of A Vector Field 

ACROSS a Closed Curve: 

C R

Field(x,y) outerunitnormal ds divField(x,y) dx dy  

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ACROSS the closed 

curve. 

 
   
 

We define the divergence of the vector field as:

m n
divField(x,y) D[m[x,y],x] D[n[x,y],y]

x y
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Lesson 8 : Measuring the Flow of a Vector 

Field ALONG a Closed Curve 

C

b

a

C

Field(x,y) unittan ds

Field(x(t), y(t)) (x'(t), y'(t))dt

m(x,y)dx n(x,y)dy



 

 







Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ALONG the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

n m
dx dy

x y

R

rotField(x,y) dx dy 

 
 
 

n m
Let rotField(x,y) .

x y
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Lesson 8 : The Flow of A Vector Field ALONG 

a Closed Curve: 

C R

Field(x,y) unittan ds rotField(x,y) dx dy  

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ALONG the closed 

curve. 

 
   
 

We define the rotation of the vector field as:

n m
rotField(x,y) D[n[x,y],x] D[m[x,y],y]

x y
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Lesson 12: The Net Flow of A Vector Field 

ACROSS a Closed Surface: 

Constructing a three-dimensional analog of using 

the Gauss-Green Theorem to compute the net 

flow of a vector field across a closed curve is 

not difficult. This is because the notion of 

divergence extends to three dimensions pretty 

naturally.  

 

We will save the three-dimensional analog of flow 

ALONG for next chapter… 
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Lesson 12: The Net Flow of A Vector Field 

ACROSS a Closed Surface: 

C

R

Field(x,y,z) outerunitnormal dA

divField(x,y,z) dx dy dz









Let R be a solid in three dimensions with boundary surface (skin) 

C with no singularities on the interior region R of C. Then the 

net flow of the vector field Field(x,y,z) ACROSS the closed 

surface is measured by: 

 Let Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) .

We define the divergence of the vector field as:

m n p
divField(x,y,z)

x y z

D[m[x,y,z],x] D[n[x,y,z], y] D[p[x,y,z],z]



  
  
  

  
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More Traditional Notation: The Divergence 

Theorem (Gauss’ Theorem) 

   
S V

F n dS F dV    

Let V be a solid in three dimensions with boundary surface (skin) 

S with no singularities on the interior region V of S. Then the 

FLUX of the vector field F(x,y,z) across the closed surface is 

measured by: 

 Let F(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) .

Let , , be known as "del", or the differential operator.
x y z

m n p
Note divField(x,y,z) F .

x y z

Finally,  let n = outerunitnormal.



   
   

   

  
     

  
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Example 1: Avoiding Computation Altogether  

 

 

  

 
     2

Let Field(x,y) 7x 2,y 6  and let C be a closed curve given by

3
C(t) (x(t), y(t)) sin (t),cos(t) sin(t)  for t .

4 4

Is the net flow of the vector field across the curve from inside to outside or 

outside to inside?

R R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy 8 dx dy     
Since divField(x,y) is ALWAYS positive for all (x,y) and there are no 

singularities for any (x,y), this integral is positive for any closed curve. 

 
    
 

m n
divField(x,y) 7 1 8

x y

That is, for ANY closed curve, the net flow of the vector field across

the curve is from inside to outside.



Example 2: Avoiding Computation Altogether  

        2 3 yLet Field(x,y,z) .

Let C be the a bounding surface of a solid region. 

Is the net flow of the vector field across the surface from 

inside to outside or 

x y cos(z), y

outside to

xz, 3z

 ins

8x 3e

ide?

C R

Since Field(x,y,z) has no singularities inside R:

Field(x,y,z) outerunitnormal dA divField(x, y,z) dx dy dz  

2 2m n p
divField(x,y,z) 1 3y 3 3y 4

x y z

  
         
  

So for ANY closed surface, the net flow of the vector field across

the surface is from outside to inside.

2

R

3y 4 dx dy dz 0   



Example 3: Avoiding Computation Altogether  

  5 3 xy sin(x)Let Field(x,y,z) .

Let C be the bounding surface of a solid region. 

Is the net flow of the vector field across the surface from 

insid

sin(y) z ,zx c

e to outsid

os(x),

e or ou

sin(5xy) 3

tside

xe

 to inside?

C R

Since Field(x,y,z) has no singularities inside R:

Field(x,y,z) outerunitnormal dA divField(x, y,z) dx dy dz  

m n p
divField(x,y,z) 0

x y z

  
   
  

That is, for ANY closed surface, the net flow of the vector field across

the surface is 0. Created by Christopher Grattoni. All rights reserved. 

R

0 dx dy dz 0 



Summary: The Divergence Locates Sources 

and Sinks 

If divField(x,y,z)>0 for all points in C, then all these points

are sources and the net flow of the vector field across C 

is from inside to outside.

Let R be a solid in three dimensions with boundary surface (skin) C with no 

singularities on the interior region R of C. Then: 

If divField(x,y,z)<0 for all points in C, then all of these 

points are sinks and the net flow of the vector field 

across C is from outside to inside.

If divField(x,y,z) 0 for all points in C, then the net flow of

the vector field across C is 0.


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Example 4: Find the Net Flow of a Vector 

Field ACROSS a Closed Curve 

    

     

2 2Let Field(x,y) x 2xy, y x  and let C be the rectangle bounded by 

x 2, x 5,y 1,and y 4. Measure the net flow of the vector field 

across the curve.

 
   
 

m n
divField(x,y) 2x 4y

x y

R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy   

 
 

  
4 5

1 2

2x 4y dx dy

 105

Negative. The net flow of the vector field across our closed curve

is from outside to inside.



Example 5: Find the Net Flow of a Vector 

Field ACROSS a Closed Surface 

   

       

2Let Field(x,y,z) 2xy, y ,5z 4xz  and let C be the rectangular prism

bounded by 1 x 4, 2 y 3, and 0 z 5. Measure the net flow of 

the vector field across the closed surface.

m n p
divField(x,y,z) 5 4x

x y z

  
    
  

C R

Field(x,y,z) outerunitnormal dA divField(x,y,z) dx dy dz  

 
5 3 4

0 2 1

5 4x dx dy dz
 

   

1375
Positive. The net flow of the vector field across our closed 

surface is from inside to outside.



The Net Flow of a Vector Field Across an 

Open Surface 

The Divergence Theorem is great for a closed surface, but it is not useful at all 

when your surface does not fully enclose a solid region. In this situation, we 

will need to compute a surface integral. For a parameterized surface, this is 

pretty straightforward: 

2 2

1 1

C

t

t

s

s

Field(x,y,z

Field(x(s, t),y(s,

) outerunitnorma

t),z(s, t)) nor

l dA

mal(s, t) ds dt



  



What is the normal vector??
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Normal Vectors: Curves Versus Surfaces 

1

2 2

1

t

C

st

s

Fi

Field(x(s, t

eld(x,y,z) outernorm

),y(s, t),z(s, t)) normal(s, t) ds d

al dA

t



  


C

b

a

b

a

Field(x,y) outerunitnormal ds

Field(x(t), y(t)) outernormal dt

Field(x(t), y(t)) (y'(t), x'(t))dt



 

  







2-Dimensions: 3-Dimensions:

In 2 dimensions, outernormal (y'(t), x'(t)).

This is more subtle in 3 dimensions...

 



Normal Vectors: Curves Versus Surfaces 

2 2

1 1
C

t

t

s

s
Field(x,y,z Field(x(s,t),y(s,) outerunitnorma t),z(s,t)) norl dA mal(s,t) ds dt   

y yx z x z
normal(s,t) , , , ,

s s s t t t

       
    

        

yx z
, ,

s s s

  
 
   

yx z
, ,

t t t

  
 
   

 

       
   
        

x(s, t), y(s, t),z(s, t) , you can find two linearly-

independent tangent vectors to the surface using partial derivatives: 

y yx z x z
, , and , ,

s s s

For a surfac

t t

e C parameteriz

t

ed by 

Use these two vectors tangent to the curve to

generate your normal vector:
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Example 6: Using a Substitute Surface 

When the Divergence is 0 

 1 1 11

For 0 t 2 and 0 s :
2

x (s, t), y (s, t),z (s, t)

cos(s)(1 sin(8s))
2sin(s)cos(t),

C : 

sin(s)sin(t), s
4 2


    

  
   
 

1
C

2
C

 
 

2 2 22
x (s,t),y (s,t),z (s, t)

2sin(s)cos(t),sin(s)sin

C

0

:

(t),

Created by Christopher Grattoni. All rights reserved. 

m n p
divField(x,y,z) 0

x y z

  
   
  

 

2

2

1

Let Field(x,y,z) .

Let C be the bounding surface of the solid region pictured below, where C is 

the union of the pointy cap,  C ,and the elliptical base C . Find the net flow 

of the vecto

z y,z x,x

r field a

  

1
cross C .



Created by Christopher Grattoni. All rights reserved. 

Example 6: Using a Substitute Surface 

When the Divergence is 0 

1 2

So the net flow of the vector field across the closed surface C is 0. However, this

calculation does NOT imply that the net flow of the vector field across C  or C is 0. 

m n p
divField(x,y,z) 0

x y z

  
   
  

C R

Field(x,y,z) outerunitnormal dA divField dx dy dz 0   

 

1 2

1

2Let Field(x,y,z) .

Let C be the bounding surface of the solid region,

the union of the cap,  C ,and the elliptical base C .

Find the net flow of the vector field acr

z y,z x,x

oss C . 

 



Example 6: Using a Substitute Surface 

When the Divergence is 0 

 

1 2

1

2Let Field(x,y,z) .

Let C be the bounding surface of the solid region,

the union of the cap,  C ,and the elliptical base C .

Find the net flow of the vector field acr

z y,z x,x

oss C . 

 

1 2
C C

2

So Field(x,y,z) outerunitnormal dA Field(x,y,z) outerunitnormal dA.

Since C  is easier to work with, we'll use this substitute surface instead!

   

R

C

0 divField(x,y,z) dx dy dz

Field(x,y,z) outerunitnormal dA



 





    
1 2

C C

Field(x,y,z) outerunitnormal dA Field(x,y,z) outerunitnormal dA

Created by Christopher Grattoni. All rights reserved. 

The next slide has an (optional) 

explanation of why this is not addition! 



Optional Slide: Why the “Negative” in 

Example 6? 



   



 
1 2

C

C C

Field(x,y,z) outerunitnormal dA

Field(x,y,z) outerunitnormal dA Field(x,y,z) outerunitnormal dA

1
C

2
C  

1 2
C C C

The negative comes from the 

need to reverse the normal 

vectors from C2 to form C! 



Example 3: Using a Substitute Surface 

2 2 2 2 2 2
x y z x y z

normal(s,t) , , , ,
s s s t t t

        
    

        

2 2 2

2 2 2

i j k

x y z

s s s

x y z

t t t

  


  

  

  

   22 2 2
x (s, t), y (s, t),z (s, t) 2sin(s)cos(t),sin(s) sin(t),0 for 0 s and 0 2C t

2
:


     

i j k

2cos(s)cos(t) cos(s)sin(t) 0

2sin(s)sin(t) sin(s)cos(t) 0





2 20i 0j (2sin(s)cos(s)cos (t) 2sin(s)cos(s)sin (t))k   

(0,0,2sin(s)cos(s))

These normals point in

the correct direction 

because from 0 s ,
2

(0,0,2sin(s)cos(s))

points up out of the

elliptical base.


 

2

2 /2

C

0 0

Field(x,y,

Field(x(s, t),

z) outerunitnormal dA

y(s,t),z(s, t)) normal(s, t) ds dt
 



  


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Example 6: Using a Substitute Surface 

When the Divergence is 0 

 
   

2

2 22 2

z y,z x,x

x (s,t),y (s,t),z (s, t) 2sin(s)cos(

Field(x,y,

t),sin(s)sin(t),0

z)

C :

 





2
C

Field(x,y,z) outerunitnormal dA

 
0

2 /2
2 2

0
sin(s)sin(t), 2cos(t)sin(s),4cos sin (s) (0,0,2sin(s)co(t s(s)) d) s dt

 

  
3 2

2 /2

00
8sin (s)cos (t)cos ds( ts) d

 

  

2 
1

The net flow of the vector field across C  is with the direction

of the normal vectors (down to up).

2 /2

0 0
Field(x(s,t),y(s,t),z(s,t)) normal(s,t) ds dt

 

  
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Summary: Using a Substitute Surface When 

the Divergence is 0 

1 2

1 2

Let C be the bounding surface of a solid region such that C C C

for two open surfaces C and C . Let Field(x,y,z) be a vector field

with no singularities contained within C such that divField(x,y,z) 0 

awa





y from singularities. Then:

1 2
C C

Field(x,y,z) outerunitnormal dA Field(x,y,z) outerunitnormal dA   

1 2
This allows us to substitute C  for C  or vice-versa when

computing a surface integral. Trade a crazy surface for

a simpler one! 

1 2

C

Note : Just because Field(x,y,z) outerunitnormal dA 0, that says nothing about C or C . 



Lesson 8: Net Flow Across When 

divField(x,y)=0 

 
  
 

m n
Let divField(x,y) 0. Here are some conclusions about the net flow

x y

of the vector field across various closed curves:

  
C

If C doesn't contain any singularities, then n(x,y)dx m(x,y)dy 0.

     
1

C C

1

If C contains a singularity, then n(x,y)dx m(x,y)dy n(x,y)dx m(x,y)dy

for any substitute curve C  containing the same singularity (and no new extras).

          
1 nC C C

1 n

If C contains n singularities, then 

n(x,y)dx m(x,y)dy n(x,y)dx m(x,y)dy ... n(x,y)dx m(x,y)dy

for little circles, C ,...,C , encapsulating each of these singularities.

Created by Christopher Grattoni. All rights reserved. 
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Lesson 12: Net Flow Across When 

divField(x,y,z)=0 
m n p

Let divField(x,y,z) 0. Here are some conclusions 
x y z

about the net flow of the vector field across various closed surfaces:

  
   
  

C

If C doesn't contain any singularities, then Field(x,y,z) outernormal dA 0. 

1C C

1

If C contains a singularity, then 

Field(x,y,z) outerunitnormal dA Field(x,y,z) outerunitnormal dA

for any substitute surface C  containing the same singularity (and no extras).

   

1 n

C

C C

1 n

If C contains n singularities, then 

Field(x,y,z) outerunitnormal dA

Field(x,y,z) outerunitnormal dA ... Field(x,y,z) outerunitnormal dA

for little spheres, C ,...,C , encapsulating each of these s



    



 

ingularities.



2

0

C

0
Field

Field(x,y,z)

(x(s

outerunitnor

,t),y(s, t),z

mal

(s, t)) normal(s,

d

) ds dt

A

t
 



  



Example 7: Using a Substitute Surface With 

Singularities (Details in Mathematica 

Notebook) 

4 4 4 3/4 4 4 4 3/4 4 4 4 3/4

y z
Let Field(x,y,z)  

y z y z y z

and let C be the boundary to the region pictured at the right.

Find the net flow of 

x
, ,

(x ) (x )

the vecto

(x )

r field across C.

 

 
 

   
 

 

m n p
divField(x,y,z) 0,  

x y z

but we have a singularity at (0,0,0).

  
   
  

Replace the surface with a small

sphere centered at (0,0,0):

Created by Christopher Grattoni. All rights reserved. 



Example 7: Using a Substitute Surface With 

Singularities (Details in Mathematica 

Notebook) 
Find normal(s,t) :

Verify they are OUTERnormals:

Created by Christopher Grattoni. All rights reserved. 



0

2

0
Field(x(s,t),y(s,t),z(s,t)) normal(s,t) ds dt 19.446

 

 

Example 7: Using a Substitute Surface With 

Singularities (Details in Mathematica 

Notebook) 

4 4 4 3/4 4 4 4 3/4 4 4 4 3/4

y z
Let Field(x,y,z)  

y z y z y z

and let C be the boundary to the region pictured at the right.

Find the net flow of 

x
, ,

(x ) (x )

the vecto

(x )

r field across C.

 

 
 

   
 

 

So the net flow of the vector field across the wavy

surface (and the sphere) is inside to outside.

Created by Christopher Grattoni. All rights reserved. 



Example 8: Surface Area 

First,  we come up with a parameterization of the surface:

 

Consider the two-dimensional surface in xyz-space described by the 

x
equation f(x,y) sin y cos . Find the surface area of the surface 

2

given the bounds 0 x 4 and 0 y 2 :

 
  

 

    

x(u,v) u

y(u,v) v

u
z(u,v) sin(v)cos

2





 
  

 

0 u 4

0 v 2

 

  
Created by Christopher Grattoni. All rights reserved. 
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The Surface Area Conversion Factor 

Now we can think of this as a map from a uv-rectangle to a xyz-surface.

(u,v)
u

u,v,sin(v)cos
2

  
  

  



The Surface Area Conversion Factor 

As in previous chapters, we'll relate a small change in area on the uv-

rectangular region relates to a change in surface area on the xyz-surface .

Notice that uv-rectangles of fixed area map into little xyz-surfaces

of varying surface area.

We can also consider how a small uv-rectangle maps into xyz-space:

Created by Christopher Grattoni. All rights reserved. 
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The Surface Area Conversion Factor 

du

dv

y(u,v)x(u,v) z(u,v)
, ,

u u u

  
 

   

y(u,v)x(u,v) z(u,v)
, ,

v v v

  
 

   

Imagine a tiny rectangle in the uv-plane:

The change in surface area that results with the xyz-surface can be 

approximated by the area of the parallelogram generated by the 

tangent vectors given by taking the partial derivative of the map 

(x(u,v),y(u,v),z(u,v)) with respect to u and v.



The Surface Area Conversion Factor 

du

dv

y(u,v)x(u,v) z(u,v)
, ,

u u u

  
 

   

y(u,v)x(u,v) z(u,v)
, ,

v v v

  
 

   

y(u,v) y(u,v)x(u,v) z(u,v) x(u,v) z(u,v)
, , , ,

u u u v v v

       
   

        

Now recall that the area of a parallelogram in 3D-space can be quickly

computed by finding the magnitude of the cross product of its 

generating vectors. This is equivalent to the length of the normal vector

shown above. Created by Christopher Grattoni. All rights reserved. 



The Surface Area Conversion Factor 

du

dv

y(u,v)x(u,v) z(u,v)
, ,

u u u

  
 

   

y(u,v)x(u,v) z(u,v)
, ,

v v v

  
 

   

y(u,v) y(u,v)x(u,v) z(u,v) x(u,v) z(u,v)
, , , ,

u u u v v v

       
   

        

xyz

y(u,v) y(u,v)x(u,v) z(u,v) x(u,v) z(u,v)
, , , ,

u u u v v v
SA (u,v)

       
   

        


A longer normal vector means 

that  the uv-rectangle has much 

more surface area in xyz-space 

(more curvature, really) 

Created by Christopher Grattoni. All rights reserved. 
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1 2 1 2

Given a parameterization of a surface (x(u,v),y(u,v),z(u,v)), you can 

find the surface area of this surface for u u u and v v v  by

integrating the following:

   

xyz

y(u,v) y(u,v)x(u,v) z(u,v) x(u,v) z(u,v)
, , , ,

u u u v v v
SA (u,v)

       
   

        


If you write T(u,v) (x(u,v),y(u,v),z(u,v)), you can write this a bit

more concisely as the following:



xyz

T T

u
SA (u,v

v
)

T T T T

u v u v

 


 

   
 





   
 


   
    

The Surface Area Conversion Factor 
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2 2

1 1

v u

xyz

R v u

dA SA (u,v) du dv  

xyz

Let T(u,v) (x(u,v),y(u,v),z(u,v)) be a map from uv-space to xyz-

T T

u v

T T T T

u

space:

Then SA (u

v u

,

v

v)
 


 

 





   
    

  

 
 

   

1 2 1 2

Given a parameterization of a surface (x(u,v),y(u,v),z(u,v)), you can 

find the surface area of this surface for u u u and v v v  by

integrating the following:

   

The Surface Area Conversion Factor 

22b

a

Is this reminiscent of the arc length formula

from last year? It should be. Here it is:

dydx
dt

dt dt

Challenge: Find the connection!!

  
   

   




2 4

xyz

0 0

Use Mathematica again: SA (u,v) du dv 28.298


 

Example 8 Revisited: Surface Area 

 
x

Find the surface area of the surface f(x,y) sin y cos given the 
2

bounds 0 x 4 and 0 y 2 :

 
  

 

    

 
u

Let T(u,v) x(u,v),y(u,v),z(u,v) u,v,sin(v)cos for 0 u 4 and 0 v 2 .
2

  
        

  

xyz

T T T T

u

1
3(7 cos(u)) (3 5cos(u))cos(

v u
Mathemat

v
ica calculates SA (u,v

2v)
4

)
   

 
   

    
  

 









 

Created by Christopher Grattoni. All rights reserved. 



Example 9: Surface Integrals 

2

The surface is made of a mixture of various metals of varying

density described by g(x,y,z) xy z g / cm . Find the mass of the surface. 

 
Consider the parameterized surface below for 0 u 4 and 0 v 2 :

T(u,v) x(u,v),y(u,v),z(u,v)

u
u,v,sin(v)cos

2

    



  
   

  

2 4

xyz

0 0

g(x(u,v),y(u,v),z(u,v))SA (u,v) du dv 174.221 g


 

xyz
Use Mathematica and the previously computed SA (u,v) :

Created by Christopher Grattoni. All rights reserved. 
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Summary: Surface Integrals: 

2 2

1 1

v u

xyz

R v u

g(x,y,z)dA g(x(u,v),y(u,v),z(u,v)) SA (u,v) du dv  

xyz

Let T(u,v) (x(u,v),y(u,v),z(u,v)) be a map from uv-space to xyz-

T T

u v

T T T T

u

space:

Then SA (u

v u

,

v

v)
 


 

 





   
    

  

 
 

   

1 2

1 2

Given a parameterization of a surface (x(u,v),y(u,v),z(u,v)), you can 

find the surface integral of the function g(x,y,z) for u u u and

v v v  with respect to surface area by integrating the following:

 

 
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Example 10: Surface Area Enclosed in a 

Curve Plotted on a Surface 

 

  
   

  

Find the area of the elliptical region (2cos(t),3sin(t)) on this same surface:

T(u,v) x(u,v),y(u,v),z(u,v)

u
u,v,sin(v)cos

2

 
To map it onto the surface, let u(s,t) 2scos(t) and v(s,t) 3ssin(t),and

plot x(u(s,t),v(s,t)),y(u(s,t),v(s,t)),z(u(s,t),v(s,t)) .

 

The filled in ellipse is given by:

(2scos(t),3ssin(t)) 

for 0 t 2 and 0 s 1.    



Example 10: Surface Area Enclosed in a 

Curve Plotted on a Surface 

 

  
   

  

Find the area of the elliptical region (2cos(t),3sin(t)) on this same surface:

T(u,v) x(u,v),y(u,v),z(u,v)

u
u,v,sin(v)cos

2

2 1

xyz xyz uv

ellipse 0 0

SA (u,v) du dv SA (u(s,t),v(s,t)) A (s,t) ds dt


  

So we are have a second change of 

variables with u(s,t) 2scos(t) and

v(s,t) 3ssin(t)!





Created by Christopher Grattoni. All rights reserved. 



Example 10: Surface Area Enclosed in a 

Curve Plotted on a Surface 

2 1

xyz xyz uv

ellipse 0 0

SA (u,v) du dv SA (u(s,t),v(s,t)) A (s,t) ds dt


  
Created by Christopher Grattoni. All rights reserved. 

st-rectangle
uv-ellipse

xyz-elliptical surface

x(u,v) u

y(u,v) v

z(u,v) sin(v)cos(u / 2)

 



 

xyz

uv

So we need SA (u,v) to do our xyz-integral in uv-space,

and we need A (s, t) to do our uv-integral in st-space.

u(s, t) 2scos(t)

v(s, t) 3ssin(t)

 



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Example 10: Surface Area Enclosed in a 

Curve Plotted on a Surface 

 

  
   

  

Find the area of the elliptical region (2cos(t),3sin(t)) on this same surface:

T(u,v) x(u,v),y(u,v),z(u,v)

u
u,v,sin(v)cos

2

uv

Using u(s, t) 2scos(t) and v(s, t) 3ssin(t),

u v

s sA (s, t)
u v

t t

2cos(t) 3sin(t)

2ssin(t) 3scos(t)

6s

 

 

 


 

 








Example 10: Surface Area Enclosed in a 

Curve Plotted on a Surface (Bonus Material!) 

 

  
   

  

Find the area of the elliptical region (2cos(t),3sin(t)) on this same surface:

T(u,v) x(u,v),y(u,v),z(u,v)

u
u,v,sin(v)cos

2

2 1 2 1

xyz uv xyz

0 0 0 0

Letting Mathematica polish this one off, we get:

SA (u(s, t),v(s, t)) A (s, t) ds dt 6s SA (u(s, t),v(s, t)) ds dt

22.0667

 





   
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Scalar Surface Integrals versus Vector 

Surface Integrals 

C R

R

Field(x,y,z) outernormal dA divField(x,y,z) dx dy dz

m n p
dx dy dz

x y z

 

  
  

  

 



Vector Surface Integral: Let R be a solid in three dimensions with boundary surface 

(skin) C with no singularities on the interior region R of C. Then the net flow of the 

vector field Field(x,y,z) ACROSS the closed surface is measured by: 

Created by Chrisopher Grattoni. All rights reserved. 

2 2

1 1

R

v u

xyz

v u

g(x,y,z)dA

g(x(u,v), y(u,v),z(u,v)) SA (u,v) du dv



 

Scalar Surface Integral: The Divergence Theorem is great for a closed surface, but it is 

not useful at all when your surface does not fully enclose a solid region. In this 

situation, we will need to compute a surface integral: 


