
Lesson 13 

Stokes’ Theorem, Curl, 3D Flow 

Along 



Lesson 8: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

C

b

a

C

Field(x,y) outerunitnormal ds

Field(x(t), y(t)) (y'(t), x'(t))dt

n(x,y)dx m(x,y)dy



  

  







Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ACROSS the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

m n
dx dy

x y

R

divField(x,y) dx dy 

 
 
 

m n
Let divField(x,y) .

x y
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Lesson 8 : The Net Flow of A Vector Field 

ACROSS a Closed Curve: 

C R

Field(x,y) outerunitnormal ds divField(x,y) dx dy  

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ACROSS the closed 

curve. 

 
   
 

We define the divergence of the vector field as:

m n
divField(x,y) D[m[x,y],x] D[n[x,y],y]

x y
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Lesson 12: The Net Flow of A Vector Field 

ACROSS a Closed Surface: 

C

R

Field(x,y,z) outernormal dA

divField(x,y,z) dx dy dz









Let R be a solid in three dimensions with boundary surface (skin) 

C with no singularities on the interior region R of C. Then the 

net flow of the vector field Field(x,y,z) ACROSS the closed 

surface is measured by: 

 Let Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) .

We define the divergence of the vector field as:

m n p
divField(x,y,z)

x y z

D[m[x,y,z],x] D[n[x,y,z], y] D[p[x,y,z],z]



  
  
  

  
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Lesson 12: The Divergence Theorem (Using 

Traditional Notation) 

   
S V

F n dS F dV    

Let V be a solid in three dimensions with boundary surface (skin) 

S with no singularities on the interior region V of S. Then the 

net flow of the vector field F(x,y,z) ACROSS the closed surface 

is measured by: 

 Let F(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) .

Let , , be known as "del", or the differential operator.
x y z

m n p
Note divField(x,y,z) F .

x y z

Finally,  let n = outerunitnormal.



   
   

   

  
     

  
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Lesson 13: The Net Flow of A Vector Field 

ALONG a Curve 

Lesson 12 was about constructing a three-dimensional analog of 

using the Gauss-Green Theorem to compute the net flow of a 

vector field ACROSS a SURFACE. All we did was upgrade to a 

surface, and extend the definition of divergence to three 

dimensions.  

 

Lesson 13 is all about constructing a three-dimensional analog of 

the net flow of a vector field ALONG a CURVE.  

 

Let’s begin by reviewing how we did this in 2-dimensions for an 

OPEN curve: 
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Lesson 8: Measuring the Net Flow of a Vector Field 

ALONG an OPEN Curve in 2-Dimensions 

C

b

a

C

Field(x,y) unittan ds

Field(x(t), y(t)) (x'(t), y'(t))dt

m(x,y)dx n(x,y)dy



 

 







Recall that if C is an open curve, then we can’t use the 

Gauss-Green Theorem. We are stuck computing an 

old-fashioned line integral: 
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Lesson 13: Measuring the Net Flow of a Vector 

Field ALONG an OPEN Curve in 3-Dimensions 

C

b

a

C

Field(x,y,z) unittan ds

Field(x(t),y(t),z(t)) (x'(t), y'(t),z'(t))dt

m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz



 

  







Extending the idea of a line integral (the flow of a 3D vector field 

along a curve living in 3D) is not particularly difficult. Here it is:  

Notice that this is flow along a CURVE, not a surface.

If this integral is positive, the net flow of the vector field

along the curve is WITH the direction of the parameterization.

If this integral is negative, the net flow of the vector field 

along the curve is AGAINST the direction of the parameterization. 
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Positive. The net flow of the vector

field is with the direction of the tangent 

vectors shown above.

Example 1: The Net Flow of a Vector Field 

ALONG an OPEN Curve in 3-Dimensions 

   

 

Let P(t) x(t),y(t),z(t) t,2t,4cos(t)  be a

curve in 3D-space for 0 t 2 . Given 

Field(x,y,z)= z,x,y ,  find the net flow of the 

vector field along the curve.

 

  



C

Field(x,y,z) unittan ds
2

0

Field(x(t),y(t),z(t)) (x'(t),y'(t),z'(t))dt


 

   
2

0

4cos(t),t,2t 1,2, 4sin(t) dt


   

 
2

0

4cos(t) 2t 8tsin(t) dt


   

216 4   



Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions 

Now that we constructed a three-dimensional 

analog of the net flow of a vector field ALONG 

an OPEN curve, we want to generalize the 

Gauss-Green Theorem so that we can handle 

the idea of the net flow of a vector field ALONG 

a CLOSED curve. This involves significantly 

more subtlety than you might think at first.  

 

Let’s begin by reviewing how we did this in 2-

dimensions for a closed curve: 
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Lesson 8 : Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 

C

b

a

C

Field(x,y) unittan ds

Field(x(t), y(t)) (x'(t), y'(t))dt

m(x,y)dx n(x,y)dy



 

 







Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ALONG the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

n m
dx dy

x y

R

rotField(x,y) dx dy 

 
 
 

n m
Let rotField(x,y) .

x y
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Lesson 8 : The Net Flow of A Vector Field 

ALONG a Closed Curve: 

C R

Field(x,y) unittan ds rotField dx dy  

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ALONG the closed 

curve. 

 
   
 

We define the rotation of the vector field as:

n m
rotField(x,y) D[n[x,y],x] D[m[x,y],y]

x y
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Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions: 

In the 2D case, we needed a counterclockwise parameterization 

of our curve. The notions of “counterclockwise” and “clockwise” 

can be problematic in three dimensions, so we need to address 

this issue!  

We can sort this problem out in most situations using the “right 

hand rule”: 

• Imagine you were standing atop this 

surface. Are your tangent vectors 

clockwise or counterclockwise relative 

to you? 

• But now image you are standing on 

the bottom of the surface. Relative to 

you are the tangent vectors clockwise 

or counterclockwise? 
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Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions: 

This gives us our fix. Just designate whatever you want to call the 

top side of the surface, and check that your parameterization is 

counterclockwise relative to that designation. You may want to 

pick a “top” that yields a counterclockwise parameterization with 

minimal work.   

This is often 

known as the 

“Right-hand 

Rule” 
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Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions: 

Next, we are going to need a 3D analog of rotField. This is going 

to take a little bit of work: 

The vocabulary for a surface that we can designate a top side for 

is an “orientable” surface. Not all surfaces are orientable, so not 

all surfaces will be accessible to us using the material in this 

chapter. See the demo in the Supplemental Mathematica file!  

• The Möbius Strip is perhaps 

the most famous non-orientable 

surface 

• Why did the chicken cross the 

Möbius Strip?  

• To get to the same side! 
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Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions: 

So we’ve dealt with a few challenges so far: 

• How do we define clockwise/counterclockwise in 3D? 

• Answer: Designate a “top” side. Be kind to yourself by 

picking your “top” to make your boundary curve have a 

counterclockwise parameterization. 

• What if you can’t designate a top side? 

• Answer: Then you’re in trouble. We need to work with 

orientable surfaces with 2 distinct sides.  

• How do we generalize the rotation of a 2D vector field, 

rotField(x,y), to 3D?  

• Answer: With a formula in the form of a 3-component vector 

that can capture the 3 planes of rotation that can occur. 
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Lesson 13: The Net Flow of A Vector Field ALONG a 

Closed Curve in 3-Dimensions: 

What do we mean by 3 planes of rotation? Well, imagine a kayak 

in whitewater rapids.  
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Surface rotation 

(whirlpool) 

xy-rotation 

 

Sideways rotation 

(Eskimo roll) 

yz-rotation 

Forward rotation 

(hydraulic/hole) 

xz-rotation 



Let’s See How we Derived the Formula for “Across” 

and then Apply these ideas for “Along” 

Notice that in Lesson 12, we were able to define divergence as a 

dot product with del, the differential operator: 

This allows us to compute the flow of a vector field ACROSS a 

closed surface.  

 Let F(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) .

Let , , be known as "del", or the differential operator.
x y z

m n p
Then divField(x,y,z) F .

x y z



   
   

   

  
     

  

   
S V

F n dS F dV    

We can obtain our higher-dimensional analog to rotField in the 

same way, but by using a cross product. We will call this curl:  
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Lesson 13: The Flow of A Vector Field 

ALONG a Closed Curve in 3-Dimensions: 

Define the curlField using a cross product:  

 Let F(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) and let , , (also known as "del")
x y z

   
    

   

i j k

curlField(x,y,z) F
x y z

m n p

  
   

  

p n m p n m
, ,

y z z x x y

      
    

      

This should look like the rotation of the vector field, but

redesigned to account for rotation in three different planes!
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Lesson 13: The Flow of A Vector Field 

ALONG a Closed Curve in 3-Dimensions: 

      
    

      

p n m p n m
curlField(x,y,z) , ,

y z z x x y

The x-component of

curlField(x,y,z) causes

swirl on the yz-plane
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The z-component of

curlField(x,y,z) causes

swirl on the xy-plane

The y-component of

curlField(x,y,z) causes

swirl on the xz-plane



Making Sense of curlField 

0 0 0

0 0 0

If curlField(x ,y ,z ) V 0, then Field(x,y,z) delivers

a counterclockwise swirl to the unit vector, V,  through

the point (x ,y ,z ).

 

Let Field(x,y,z) be a vector field, and let V be a unit vector whose tail is at the 

point (x0,y0,z0): 

0 0 0

0 0 0

If curlField(x ,y ,z ) V 0, then Field(x,y,z) delivers

a clockwise swirl to the unit vector, V,  through the 

point (x ,y ,z ).

 

0 0 0

0 0 0

If curlField(x ,y ,z ) V 0, then Field(x,y,z) delivers

no swirl to the unit vector, V,  through the point 

(x ,y ,z ).

 
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Example 2: Calculating curlField•V 

 
 

   

2 2 3

2 2 2

2,3,5
Given Field(x,y,z) z ,x ,y  and V with its tail at

2 3 5

the point 1,0, 1 ,  find and interpret curlField 1,0, 1 V :

  
 

  

 
  


  



      

 

2 2 3

2

2

i j k

i) curlField x,y,z
x y z

z x y

i(3y 0) j(0 ( 2z)) k(2x 0)

(3y , 2z,2x)
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 
 

    
 2 2 2

2,3,5
iii) curlField 1,0, 1 V (0,2,2) 2.596

2 3 5

  ii) curlField 1,0, 1 (0,2,2)

Positive,  so the vector V feels a counterclockwise swirl around it

at the point (1,0, 1).
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Stokes’ Theorem: Computing the Net Flow of 

a Vector Field Along a CLOSED Curve in 3D 

 Let Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) . Then given

an orientable surface, R, with a boundary curve, C, parameterized

in the counterclockwise direction such that Field(x,y,z) has no 

singularities on R, w



e have:

p n m p n m
Note: curlField(x,y,z) , ,

y z z x x y

      
    

      

   
C R

Field(x,y,z) unittan ds curlField(x,y,z) topunitnormal dA

Note: For this to work, you need your surface to be orientable.

That is, you need to be able to designate a top side of the surface, 

and then get a counterclockwise parameterization of the 

boundary curve using the right-hand rule as your guide.



Stokes’ Theorem Using Traditional Notation: 

 Let F(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) , , , , and
x y z

n topunitnormal. Then given an orientable surface, R, with a 

boundary curve, C, with a counterclockwise parameterization 

such that Field(x,y,z) 

   
    

   



has no singularities on R, we have:

i j k

p n m p n m
curlField(x,y,z) F , ,

x y z y z z x x y

m n p

         
        

         

     
C R

F(x,y,z) unittan ds F n dA
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Stokes’ 3D Theorem Reduces to Gauss-

Green in 2D: 

 
 

Let F(x,y) m(x,y),n(x,y)  be a 2D-vector field. We can embed it in 

3D by writing F(x,y) m(x,y),n(x,y),0 . Hence:





 

i j k

n m
curlField(x,y,z) F 0,0, 0,0,rotField(x,y)

x y z x y

m n p

     
       

     

     



 



C R

R

F(x,y) unittan ds F n dA

rotField(x,y) dx dy

Further,  let R be a 2D-region with boundary curve, C, parameterized

in the counterclockwise direction. We can embed this in 3D by thinking

of this as a flat surface in xyz-space sitting on the xy-plane. Hence, we 

know that n topunitnormal (0,0,1). 
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Example 3: Using Stokes’ Theorem 

 Let Field(x,y,z) y z,x z,y x  and let R be the orientable

surface shown below with boundary curve C.

   

p n m p n m
curlField(x,y,z) , ,

y z z x x y

      
    

      

 0,0,0

   
C R

Field(x,y,z) unittan ds curlField topunitnormal dA

 
R

(0,0,0) topunitnormal dA

0
So the net flow of the vector field along the curve C is 0.
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Stokes’ Theorem in Practice 

Look at our formula below. If you get a parameterization for your surface,

find normal(s,t), and go to the trouble of making sure that these are top 

normals, it is reasonable to use Stokes' Theorem. In practice, it is usually 

easier to do the line integral than the surface integral. We will mainly use 

Stokes' Theorem when the curlField is always (0,0,0).

 

  

 

 

 
2 2

1 1

C R

t s

t s

Field(x,y,z) unittan ds curlField topunitnormal dA

curlField x(s, t), y(s, t),z(s, t) normal(s, t) ds dt

y yx z x z
normal(s, t) , , , ,

s s s t

p n m p n m
curlField(x,y,z) , ,

y z z x

t

x y

t

       
    

      

      
   

 

 
      
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Lesson 4: The Gradient Vector 

1 2 n
Let f(x ,x ,...,x ) be a function of n variables. Then the 

gradient vector is defined as follows:

   
       1 2 n

f f f
f , ,...,

x x x

The gradient vector is designed to point in the direction 

of the greatest INITIAL increase.

Notice that the gradient vector always lives in one dimension

lower than function does. 3D surface? 2D gradient vector. 2D

curve? 1D gradient vector. 4D hypersurface? 3D gradient vector.



The Gradient Vector Through the Lens 

of “Del,” The Differential Operator 

1 2 n

1 2 n

Let f(x ,x ,...,x ) be a function of n variables and let , ,..., .
x x x

   
       

1 2 n

f , ,..., f
x x x

   
       

1 2 n

f f f
, ,...,

x x x

   
      
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Lesson 5: The Gradient Points Towards the 

Direction of Greatest Initial Increase 

2 2x y
Compare the gradient fiel

x
d and 

y
f(x,y) :

e 




Following the gradient (usually) gets us to local mins/maxes.
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Lesson 13: The Gradient Points Towards the 

Direction of Greatest Initial Increase 

2 2 2x y z

x y z
f(x,y,z) . Now, f(x,y,z) is a 3-dimensional vector

e

field and f(x,y,z) is a 4-dimensional hypersurface. Your best bet is to think

of f(x,y,z) as a temperatur

Now consid

e function with l

er 

o



 
 

cal maximums being little hot 

spots and local minimums being little cold spots. The gradient points you to 

these locations:

 

We can use FindMaximum in 

Mathematica to find a hot spot

at 0.408,0.408,0.408 . You can 

also see this from the plot of the 

vector field.
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Lesson 7: The 2D Gradient Test 

 A vector field, Field(x,y) m(x,y),n(x,y) , is a gradient 

field if and only if the vector field has no singularities and:



 


x y

xy yx

If Field(x,y) is a gradient field, then Field(x,y)= f ,f . 

So f f .

Proof of "if" Part of Theorem:

m n

y x

 


 
Equivalently: rotField(x,y) 0
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Lesson 13: The 3D Gradient Test 

 A vector field, Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) , is a gradient

field if and only if the vector field has no singularities and:



curlField(x,y,z) (0,0,0)

p n m p n m
curlField(x,y,z) , ,

y z z x x y

      
    

      

Outline of "if" Direction of Proof: For a function f(x,y,z), we would have to show that

f f f
the gradient field, f , , , has curlField (0,0,0).

x y z

   
   

   

  
   

  

  

  

i j k

f (0,0,0)
x y z

f f f

x y zCreated by Christopher Grattoni. All rights reserved. 



Lesson 7: The Net Flow of a Gradient Field 

Along a Closed Curve 

 
 

Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let C be a 

simple closed curve with a parameterization (x(t),y(t)) for a t b.

 
b

a

1) Field(x(t),y(t)) (x'(t),y'(t))dt 0

 C2) m(x,y)dx n(x,y)dy 0

3) The net flow of a gradient field 

along a simple closed curve is 0.

Is the flow of a gradient field ACROSS a closed curve 0?
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Lesson 13: The Net Flow of a Gradient 

Field Along a Closed Curve in 3D 

 Let Field(x,y,z)= m(x,y,z),n(x,y,z),p(x,y,z)  be a gradient field, and let C

be a simple closed curve with a parameterization (x(t),y(t),z(t)) for a t b. 

b

a

1) Field(x(t),y(t),z(t)) (x'(t),y'(t),z'(t))dt 0 

C
2) m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz 0  

3) The net flow of a gradient field along a simple closed 

curve in 3D is 0.

C R

Stokes' Theorem: Field(x,y,z) unittan ds curlField topunitnormal dA   

R

(0,0,0) topunitnormal dA 

0

Proof: If Field(x,y,z) is a gradient field, then curlField(x,y,z) (0,0,0).
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Lesson 13: The Net Flow of a Gradient 

Field Along a Closed Curve in 3D 

 Let Field(x,y,z)= m(x,y),n(x,y),p(x,y)  be a gradient field, and let C be a

simple closed curve with a parameterization (x(t),y(t),z(t)) for a t b. 

b

a

1) Field(x(t),y(t),z(t)) (x'(t),y'(t),z'(t))dt 0 

C
2) m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz 0  

3) The net flow of a gradient field along a simple closed

curve in 3D is 0.

Your intuition here should be that if you start and end

the same point, your net change in temperature is 0.

Note that this DOES NOT work for any old vector field.

The key is that you must have a GRADIENT field.



Lesson 7: Path Independence for 2D-

Gradient Field 

  1

2

Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let C  and

C be different curves that share the same starting and ending point:

A gradient field is said to be 

path independent. The net flow 

of the gradient field along any 

two curves connecting the same

two points is the same...

1 2
C C

m(x,y)dx n(x,y)dy m(x,y)dx n(x,y)dy   
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Lesson 13: Path Independence for a 3D-

Gradient Field 

 

1 2

Let Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) be a gradient field, and let

C  and C be different curves that share the same starting and ending point:



1 2
C C

m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz     

C

Then Field(x,y,z) unittan ds 0. 

Proof: Since Field(x,y,z) is a gradient field, the net flow of the vector field 

along a closed curve is 0:

1 2
Let C be the closed curve formed by C C C . 

1 2
C C

Field(x,y,z) unittan ds Field(x,y,z) unittan ds 0     

1 2
C C

Field(x,y,z) unittan ds Field(x,y,z) unittan ds    
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Lesson 13: Path Independence for a 3D-

Gradient Field 

 

1 2

Let Field(x,y,z) m(x,y,z),n(x,y,z),p(x,y,z) be a gradient field, and let

C  and C be different curves that share the same starting and ending point:



A gradient field is said to be path independent. 

The net flow of the gradient field along any two

curves that start and end at the same points is

the same...

1 2
C C

m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz m(x,y,z)dx n(x,y,z)dy p(x,y,z)dz     
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