
Lesson 3: Linearization Supplement 

3D Plotting of Surfaces, Paths on 

Surfaces, and Linearization 
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Example 1: Linearizing y = f(x) at the 

Point (a,f(a)) 



  

  

Recall: The equation of a tangent line

to a curve y f(x)  at the point (a, f(a)):

Point Slope Form: y f(a) f '(a)(x a)

Linearization Form: L(x) f '(a)(x a) f(a)

Remember that we can use this tangent line as

a reasonable approximation of the curve near

the point (a,f(a)).



  

 

2f(x) x  at the point (2, f(2)):

y 4 4(x 2)

L(x) 4x 4

See for yourself :

x f(x) L(x) %Error

2 4 4 0

2.1 4.41 4.40 0.23%

2.5 6.25 6.00 4%

3 9 8 11.11%

6 36 20 44.44%



Example 2: Linearizing z = f(x,y) at the 

Point (a,b,f(a,b)) 

    

We would like to extend this idea to plotting a plane tangent to

a 3D surface at a point, but 

First (Wrong) Try :

we have a technical p

z f(a,b) f '(a,b)(x

robl

a)

em to over

f '(a,b)(

com :

y

e

b)

This is a good start: We can see that this is an equation for a plane

that passes through the point (a,b,f(a,b)). But should worryf'(a,b) you...

What does mean if f(x,y) has two variables,f'(a x a,b) nd y?

Really, we want to build our plane in two directions: x and y.

We need machinery to accomodate this need:

    z f(a,b) f'(a,b)(x a) f'(a,b)(y b)
x-direction y-direction
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Detour: The Partial Derivative 

This is an easier fix than you'd think. We need the partial derivative of f(x,y) 

with respect to x or y, depending on the situation: 

   


Partial derivative of f(x,y) with respect to x:

(Hold y constant and take the derivative 

with respect to x.)

(1,0)
x

f f (x,y) f (x,y) D[f[x,y],x]
x

   


Partial derivative of f(x,y) with respect to y:

(Take the derivative with respect to y and hold 

x constant.)

(0,1)
y

f f (x,y) f (x,y) D[f[x,y],y]
y

 2Try this for f(x,y) y cos(x) :


 



2f
y sin(x)

x






f
2ycos(x)

y
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Detour: Partial Versus Total Derivatives 

2 5

Note that the partial differential, , behaves differently than the total
x

d
differential, . Let's try this for f(x,y) 4y

d
x

x
y :





 

 2 5 5

Partial Derivative (Hold y con

x y

sta

4

nt):

x
2xy y


 


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 2 5 5 2 4

Total Derivative (Treat y as a variab

dy
x y 2xy 5

l

dy
4y

e):

d

dx
x y

dx
4

dx
  



Detour: Partial Versus Total Derivatives 

d
Now try for versus :

y dy





 2 5 2 4

Partial Derivative (Hold x co

x y

nstan

4y

t):

y
y 45x


  


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 2 5 5 2 4

Total Derivative (Treat x as a vari

dx
x y 2xy

able):

d
5

dy
x4 y

d
y 4

y
  



Example 2: Linearizing z = f(x,y) at the 

Point (a,b,f(a,b)) 

    
x y

With the partial derivative at our fingertips, we can 

now find the equation o

Second Try : z f(a,b)

f a pl

f (a,

ane tangent to a surfac

b)(x a) f (a,b)(

:

y

e

b)

x
f (a, b) is slope of the tangent line in the x-direction 

for the surface z = f(x, y) at f(a, b)

y
f (a, b) is slope of the tangent line in the y-direction 

for the surface z = f(x, y) at f(a, b)
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Example 2: Linearizing z = f(x,y) at the 

Point (a,b,f(a,b)) 

 



2 2Surface: f(x,y) x y

Point: (a,b) (1,1)

Find the equation of the tangent plane

to f(x,y) at (1,1).

  
x x

f (x,y) 2x f (1,1) 2

  
y y

f (x,y) 2y f (1,1) 2

  2 2f(1,1) 1 1 2

    
x y

z f(a,b) f (a,b)(x a) f (a,b)(y b)

    z 2 2(x 1) 2(y 1)
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Example 2: Linearizing z = f(x,y) at the 

Point (a,b,f(a,b)) 

x y
L(x,y) f(a,b) f (a,b)(x a) f (a,b)(y b)    

L(x,y) 2 2(x 1) 2(y 1)    

  
x x

f (x,y) 2x f (1,1) 2

  
y y

f (x,y) 2y f (1,1) 2

  2 2f(1,1) 1 1 2

 



2 2Surface: f(x,y) x y

Point: (a,b) (1,1)

Find a linearization, L(x,y), of f(x,y) at (1,1).



Example 3: Using Linearization to 

Approximate a Path on a Surface 

 

  

 

2 2

t(x(t), y(t)) (0.7 4sin(t),0.

f(x,y)

Putting it all together!

Surface:

Parametric Path on xy-plane:

Pa

(x(t), y(t),f(x(t), y(t))

th on Surface:

Time:

0

x

4e

.1 t

)

)

y

0.1

Find a linearization L(x,y) of f(x,y) at (0.7,0.4).

Use L(x(t),y(t)) to approximate f(x(t),y(t)).
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Example 3: Using Linearization to 

Approximate a Path on a Surface 

 



 





2 2

t

Putting it all together!

Surface:

Parametric Path on xy-plane:

Path

(x(t), y(t),f(x(t), y(t)))

f

(x(t), y(t)) (0.7 4sin(t),0.

on Surface:

Time:

0.1 t 0.1

Point of Linearization:

(0.7,0.4)

Linearizati

(x,y) x

on:

L(

4 )

y

e

x,y)     
x y

f(0.7,0.4) f (0.7,0.4)(x 0.7) f (0.7,0.4)(y 0.4)

Path on Plane (Linearization)

(x(t), y(t),L(x(t),

:

y(t)))



Example 4: Using Linearization to 

Approximate a Path on a Surface 

 



 





2 2

t

Putting it all together!

Surface:

Parametric Path on xy-plane:

Path

(x(t), y(t),f(x(t), y(t)))

f

(x(t), y(t)) (0.7 4sin(t),0.

on Surface:

Time:

0.1 t 0.1

Point of Linearization:

(0.7,0.4)

Linearizati

(x,y) x

on:

L(

4 )

y

e

x,y)     
x y

f(0.7,0.4) f (0.7,0.4)(x 0.7) f (0.7,0.4)(y 0.4)

How well does approximat fL(x(t),y(t) (x(t),) e y(t))?
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(x(t),y(t),L(

Path on P

x(t),y(

lane:

t)))



Example 4: Using Linearization to 

Approximate a Path on a Surface 

We could get a handle on this 

by stripping out all the distractions 

in our previous graph. Instead, jus

f(x(t),y(

t 

put  versus t on a plot and 

 versus t on the same plot.

Basic

L(x(t),y(t))

ally, just

t))

z-values versus time!

 



As expected, when t 0 (at (0.7,0.4)).

It veers off from there, just like when we approximate y f(x)

near (a,f(a)) using the tangent to 

L(x(t),y(t

the curve 

f(x(t),y(t

at (a,f(

)))

a)).
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Example 5: Using Linearization to 

Approximate Another Path on our Surface 



  







2 2

(x(t), y(t)) (0.7cos(

Surface:

Parametric Path on xy-plane:

Path

(x(t), y(t),f(x(t

on

),

Surf

y(t)

3t),0

ace:

Time:

.4 t)

0.

))

1

f(x,y) x

t

y

0.1

Find a linearization L(x,y) of f(x,y) at (0.7,0.4).

Use L(x(t),y(t)) to approximate f(x(t),y(t)).
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Example 5: Using Linearization to 

Approximate Another Path on our Surface 



 



 



 
x

2 2

(x(t), y(t),f(x(t), y(t)))

Surface:

Parametric Path on xy-plane:

Path on Surface:

Time:

0.1 t 0.1

Point of Linearization:

(0.7,0.4)

Linearizat

(x(t), y(t)) (0.7cos(3t),0.

ion:

L(x,y) f(0.7,0.

4 t)

4) f (

f(x

0.7

,y) x y

,0.4   
y

)(x 0.7) f (0.7,0.4)(y 0.4)

Path on Plane (Linearization)

(x(t), y(t),L(x(t),

:

y(t)))



Example 5: Using Linearization to 

Approximate Another Path on our Surface 



 



 



 
x

2 2

(x(t), y(t),f(x(t), y(t)))

Surface:

Parametric Path on xy-plane:

Path on Surface:

Time:

0.1 t 0.1

Point of Linearization:

(0.7,0.4)

Linearizat

(x(t), y(t)) (0.7cos(3t),0.

ion:

L(x,y) f(0.7,0.

4 t)

4) f (

f(x

0.7

,y) x y

,0.4   
y

)(x 0.7) f (0.7,0.4)(y 0.4)

(x(t),y(t),L(x(t),

Notice that L(x,y) is the same as Example 7, but

is a different path on the plane 

from what we found bef

y(t)))

ore. 

(x(t),y(t),L(

Path on P

x(t),y(

lane:

t)))



Example 5: Using Linearization to 

Approximate Another Path on our Surface 



 



 



 
x

2 2

(x(t), y(t),f(x(t), y(t)))

Surface:

Parametric Path on xy-plane:

Path on Surface:

Time:

0.1 t 0.1

Point of Linearization:

(0.7,0.4)

Linearizat

(x(t), y(t)) (0.7cos(3t),0.

ion:

L(x,y) f(0.7,0.

4 t)

4) f (

f(x

0.7

,y) x y

,0.4   
y

)(x 0.7) f (0.7,0.4)(y 0.4)

How well does approximate fL(x(t),y(t)) (x(t),y(t)?

(x(t),y(t),L(

Path on P

x(t),y(

lane:

t)))



Example 5: Using Linearization to 

Approximate Another Path on our Surface 

We could get a handle on this 

by stripping out all the distractions 

in our previous graph. Instead, jus

f(x(t),y(

t 

put  versus t on a plot and 

 versus t on the same plot.

Basic

L(x(t),y(t))

ally, just

t))

z-values versus time!

You might be surpised to see versus time is not linear.

You will be less surprised when you think of how 

is a non-linear path on a plane so your z-

L(x(t),y(t))  

(x(t),y(t),L(x(t),y(t)))

values versus time don't

define a linear function. Created by Christopher Grattoni. All rights reserved. 


