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Let f(x) = x%. Then :—f = 2X. This can be thought of as a vector that
X

tells you the direction of greatest initial increase on the curve. The
magnitude of the vector tells you how steep the increase.

Let's try a few

. d
x-values in —:
dx
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We can put the tails of our vectors on the curve itself
to get picture that's a little easier to work with:

What do you notice about the magnitude of the gradient vector at x=0?

1o}

1 1 1 L L 1 1 L L L 1 L 1 L 1 L L 1
-1.0 0.5 ) ) ) 0.5 1.0
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We can try again with f(x) = sin(x) :

What do you notice about the magnitude of the gradient vector at x = g and x = 3—?

2

That's right! The places where we have horizontal
;i tangent lines are where the gradient vector is the

zero vector. So the places where the gradient vector

0k is the zero vector are candidates for local extrema.

=10k
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Let f(x,,X,,...X ) be a function of n variables. Then the
gradient vector is defined as follows:
(of of  of

Vi = , ey ——
\6x1 OX, OX_ )

The gradient vector is designed to point in the direction

of the greatest INITIAL increase on your curve/surface/etc.




Delnnis ATV ECLOR

Let f(x,, x,,...,X_) be a function of n variables and let

vf| o o o
OX, OX, OX_

Ex. Find Vf given Ex. If f(x,y) = +y’ —3x -3y,
f(x) = sin(x). find VH.
Vf(x) = (cos(x)) VE(x,y) = (3x2 ~3,3y% - 3)

Theorem: If f(x ,x,,...,x_) is a function of n variables, then the

candidates for local maxima/minima are where Vf = (0, O,...,O)

or where Vf is undefined.
NOTE : These are just CANDIDATES, not necessarily extrema!!



This is the surface plotted together
with a projected gradient field below it.

The surface is like a mountain
and the gradient vector is like a
magic compass that, no matter where @
you are standing on the mountain, .
points in the immediate direction that™ |~ _ :
is the steepest uphill. RN xﬁﬁ?ﬁ!'

Vi(x,y) = (4 cos’ (x) sin(x) + 4 cos(x) sin(x) cos(y), 2cos’(x) sin(y) + 2cos(y) sin(y))



One of the main reasons we like to plot e NN N
the gradient vectors (called a gradient SR ot | /o gl
vector field) is that we can figure out AR N /iy ]
quite a bit about a 3D surface without | L\ /1
the hard work of a 3D plot: 1 /
L / =
The vectors tell you the direction of
greatest initial increase on the surface g
at a given point, and their magnitude 71 \
tells you how steep it is! &/ T~ \:
7/ o
St 7 N

SRR N

-1.3 -1.0 -0 0.0 0.5 1.0 1.5

Vi(x,y) = (4 cos’(x) sin(x) + 4 cos(x) sin(x) cos(y), 2 cos’(x) ;sin(y) + 2cos(y)sin(y)



We can also generate a "contour plot" of our
surface. This is also called a set of level curves.
These are merely slices of the surface projected
onto the xy-plane:

1.0

0.5

0.0

—0.5

-1.0

-1.3
ed by Christopher Gre

Let f(x,y) = —(cos’(x) + cos’(y))? and Vf(x,y) = (%




Latitude

294.0

. 264.0
s0.0 234.0 . 500
: Father Point/
~ ~ Rimouski J
£
g
37.0 o ris]
24.0 g 24.0
234.0 264.0 294.0

Longitude
Figure 4. Contour map depicting height differences between NAVD 38 and NGVD 29 (units = mm).

This is merely just a technique for representing 3D data in 2D.

Created by Christopher Grattoni. All rights reserved.



AENARSULIAce andN@ontour Plot

Let f(x,y) = —(cos’(x) + cos’(y))? and Vf(x,y) = %%) :

We can put our contour plot
and gradient field together:

Recall that the gradient always
points in the direction of
greatest initial increase, so it I
must get you from one level .
curve to the next as efficiently

as possible. That is, the
gradient vector is B

perpendicular to the level o
curve passing through its tail. '

Created by Christopher (Gfattoni. All rightS reseTved.
-1.5 -1




* A
ﬁ;sa;rﬂple SRSSGHACCRANENEeNTour Plot
L |

Let f(x,y) = —(cos’(x) + cos’(y))? and Vf(x,y) = (% %) :
Theorem: The gradient | |

is always perpendicular
to the level curve
through its tail.

Proof: Later in the notes.




Let f(x,y) = —(cos’(x) + cos’(y))’ and VF(x,y) = (&5) Show that if we are at point

(1,1,f(1,1)) and move in the direction of the gradient Vf(1,1), we must go up before we
go down:

Here is a plot of f(x(t),y(t)) versus t
where (x(t),y(t)) = (1,1) + tV{(1,1)
for0<t<1l:

Created by Christopher Grattoni. All rights reserved.
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Let f(x,y) = —(cos’(x) + cos’(y))’ and let (x(t),y(t)) = (cos2 (1+1t), sin(2t)).

Finally, plot (>(t), y(t), f(x(t), y(t)),a path on the surface.
(x,y,f(x,y)) : the surface (a mountain) ey
(x(t), y(t)) : a parametric path (map of a hiking trail)

(x(t), y(t), f(x(t), y(1)) : path on the surface
(the actual hiking trail on that mountain)

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = —(cos?(x) + cos?(y))? and let (x(t), y(t)) = (cos2(1 + t),sin(2t)). \

Plot (x(t), y(t),f(x(t),y(t)),a path on the surface. Now, add in the
gradient vectors on the path:

The surface is a like a mountain
and the path is a hiking trail on
that mountain, but the gradient
vectors are basically a magic compass
telling you the steepest direction
from where you are standing. You
can use this to figure out how steep
the road ahead is.

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = —(cos’(x) + cos’(y))” and let
(x(t),y(t)) = (cos2 1+ t),sin(2t)). The gradient

vectors along the path are blue and tangent vectors

are orange.

Let's go point by point and describe
what's happening on the hiking trail:

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = —(cos’(x) + cos*(y))* and let (x(t), y(t)) = (cos2 1+ t),sin(Zt)).

The gradient vectors along the path are blue and tangent vectors are orange.

We saw the angle between the gradient, ‘

_EJ and the tangent vector, (x'(t),y'(t)),

is the key here! Recall that Ve W = ‘VHW‘ cos(0) :

If the angle between (%%) and (x'(t),y'(t)) is acute,

(a_f a_f) o (x'(t),y'(t))>0 and we are walking uphill. ] >

ox "y

If the angle between (%%f) and (x'(t),y'(t)) is obtuse,

(ﬂ a_f) o (x'(t),y'(t)) <0 and we are walking downlhill.

ox ' oy




-

If the angle between [g_f%f] and (x'(t),y'(t)) is acute, If the angle between [Z—f%f] and (x'(t),y'(t)) is obtuse,
X X

of of) ..., : : of of) ..o : .
(G_XEJ ¢ (x'(t),y'(t))>0 and we are walking uphill. (ax . ay] (' (t),y'(t)) <0 and we are walking downhill.
Walking uphill is like saying f(x(t),y(t)) is increasing at t. A

Walking downlhill is like saying f(x(t),y(t)) is decreasing at t.

The 2D Chain Rule:
df(x(t),y(t)) a_f 6_f e : |
Tt =\ ox " ay O (t).y' (1) \ -

Created by Christopher Grattoni. All rights reserved.



The 2D Chain Rule:
dt OX oy

df(x(t), y(t) _ ( of ﬁ] . (1), (1)

Chain Rules in Other Dimensions:

1p: IO _ o

dt
. df(x(t),y(t),z(t)) (of of of o (x' : ;
3D: Tt = ( ox" Oy’ 6zj (x'(t),y'(1),z'(v))
o dfO ()L x (1) [ of of e :
n-D: dt = (axl 5X,,J (x,"(t),...x_"(t))

"The derivative of the outside times the derivative of the inside."
(Gradient) (Dot Product)| |(Tangent Vector)

Created by Christopher Grattoni. All rights reserved.
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Theorem: The gradient is always perpendicular to the level curve through its tail.

Proof: We will only show this for a surface z = f(x,y) whose. . -

level curve c = f(x,y) can be parameterized by (x(t), y(t)).
Then a tangent vector on the level curve can be described

by (< (t).y"(1)). ([ \\“ :

Next, the gradient is Vf(x,y) = of of

ox'oy )
For them to be perpendicular, we want their dot product
to be O:
of of : : df(x(t), y(t)) .
—— [*('(),y' (1)) = d By Chain Rule...
(ax ayj Y dt Y
=0 But ¢ = f(x,y), and the

So the gradient is L to the level curve. derivative of a constant is 0...

Another way to think of this is a level curve is defined as a path

df(x(8), y(1)) _
dt

0...

on the surface where your height stays constant. So



Let f(x,y) = x* + xy and let (x(t), y(t)) = (cos(t),sin(t)). Find :—: :

—5) = (ZX +Y, X) = (Zcos(t) + sin(t),cos(t))

I(X'(t).y'(t)) = (—sin(t), cos(t))

df(x(t).y(t) _(of of ) . .
It = ( Pl 6y] O (t),y' (1)
= (2 cos(t) + sin(t), cos(t)) e (—sin(t), cos(t))

= —2sin(t) cos(t) — sin’(t) + cos?(t)

= cos(2t) — sin(2t)

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = x* + y* —3x —3y and suppose you are standing on the surface at the
point (2, 3,20). If you decide to walk in the direction of (-7, 2), do you go uphill

or downhill on f(x,y) when you take your first step?

VE(x,y) = (3x2 -3,3y* - 3)
v£(2,3) =(9.24)
(9.24)¢(-7,2)=-15
Since this dot product is negative, we know ::|

our first step will be downhill. L

This negative tells us the angle between the H;_
gradient at (2,3) and our direction vector is 28]
obtuse. We are walking against the directionM:_
advised by our Gradient Compass: downhill! _




Find all local maxima/minima on this surface.

Theorem: The candidates for

local extrema are where Vf = (0,0),

or where it is undefined.

x=11ly=%1

Crltlcal Points: for local extrema? Well, points where we have
‘Vf‘ = ‘(0,0)‘ = 0 indicates that the surface is perfectly
11 1 ’ 11 _1 ’
flat here. That is, the tangent planes to the surface

(_1 1) (_1 _1) at those points are horizontal. So these are locations
' ' ! where we could have a local maximum or minimum.

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = x*> + y*> —3x —3y. We previously found Vf(x,y) = (3x2 -3,3y° - 3).

Find all local maxima/minima on this surface.

Critical Points:
(1.2).(1.-1).(-1.2).(-1.-1)
(1,-1) and (-1,1) are called
saddle points:

They bring you up in one
direction down in the other.
These are not extrema.

Task: Look at the surface in
Mathematica and convince

you rself these are nOt eXtrema. ‘oni. All rights reserved.



Let f(x,y) = x*> + y*> —3x —3y. We previously found Vf(x,y) = (3x2 -3,3y° - 3).
Find all local maxima/minima on this surface.

Saddle point analogy:

A Saddle Point is to 3D as a Non-Max/Min Horizontal Tangent is to 2D.

Created by Christopher Grattoni. All rights reserved.




Let f(x,y) = x*> + y*> —3x —3y. We previously found Vf(x,y) = (3x2 -3,3y° - 3).

Find all local maxima/minima on this surface,——————F— —— —— — —

Remaining Candidates: (AL PR N A AT
(11)and(—1-1) A0 B N U U N U U S SR A O &
The gradient vectors show if>re - @ - - - — — - @ - —— -
that (-1, - 1) is alocal max | e e s s e
B e L T S
(the surrounding vectors all AN L S A A A SN ]
pointto (—1,—1)). N A A P B B BN
MWW N S S N NN
The gradient vectors show BOUNE Y Y YR EERE SN
that (1,1) is a local min TR L e e e
-1 — — = = = A= A= = e
(the surrounding vectors all P . e e e ' o
point away from (1,1)). ;; ; ; ; ; L Q % ; t ;;
j AR S
Saddle points have gradient ) SN

vectors both flowing in and out.



Find all local maxima/minima on this surface.

Summary:

Local Maximum: (-1, - 1)
Local Minimum: (1,1)
Saddle Points: (1,-1) and (-1,1)

Created by Christopher Grattoni. All rights reserved. H|



oneNEAGHIAINIDERIVAative

C— -

xample O caS¢

amitrmasrand Minimumas

St to ldERGIAVIE

—

B —

You might wonder how to identify
maxima, minima, and saddle points
without having to use Mathematica

to plot the gradient field. For this,

we generalize the second derivative test.

Created by Christopher Grattoni. All rights reserved.



H.xampie A € ‘ HVAative

(
Test to ldt A Vinimi

Recall: The second derivative states that if f'(a) = 0, then:

If f''(a) < 0, then we have a local maximum at x = a
If f''(a) > 0, then we have a local minimum at x = a
If f''(a) = 0, then the test is inconclusive.

5 3 6

Example: Let f(x) = S 1t

5 3 4l

f'(-2) =0 & f''(-2) < 0: local maximum at x = -2. 3t

f'(2) =0 & f''(2) > 0 : local minimum at x = 2. f:
f'(0)=0&f'"(0)=0:test inconclusiveat x=0. 15— — T3 4

4

-2

-3 F

q._-1_-

ol

Created by Christopher Grattoni. All rights reserved.



HxXamipis A € ’ | HvVative

(
Test to ld€mi and Viinims

Now for a maximum, we need to be concave down

in the x-direction AND y-direction. Likewise, for a minimum,
we need to be concave up in the x-direction AND y-direction.
If we mix between the two, we have a saddle point.

The tool that lets us analyze this is the Hessian Matrix:

ot ot
ox? 0Ox
Hf(x,y) =
Y=\ o2 oo
Oyox  oy*

Created by Christopher Grattoni. All rights reserved.
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Examplet 0N 5S¢ pRantiaifiDErivative
lest to laemniil dITIEIISEATIA V11 1MHEaS
o o
20X
Hessian Determinant: D(x,y) = ‘Hf(x,y)‘ = 6)2( zay
of o
oyox oy’
D(a,b) | f_(a,b) Conclusion
+ — (a,b,f(a,b)) is a local maximum.
+ + (a,b, f(a,b)) is a local minimum.
— n/a (a,b,f(a,b)) is a saddle point.
0 n/a The test is inconclusive.

Created by Christopher Grattoni. All rights reserved.




S CenEaRAGHAUNDERIVATIVE
ESAmmsrand Minimums
Conclusion
+ - (a,b,f(a,b)) is a local maximum.
+ + (a,b,f(a,b)) is a local minimum.
- n/a (a,b,f(a,b)) is a saddle point.
0 n/a The test is inconclusive.

How does this work? Well, if D(a,b) is positive, it is telling us that the "second
derivatives in the x-direction and y-direction” are pointing the same way.

So if D(a,b) is positive and f_(a,b) is negative, then we are "concave down" in
both directions which is a local maximum. If D(a,b) is positive and f_(a,b) is
positive, then we are "concave up” in both directions, which is a local minimum.

If D(a,b) is negative, then the x-direction and y-direction second derivatives
are "pointing in different directions,” or a saddle point.

If D(a,b) is zero, we can't tell.

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = x* + y* —3x —3y. We previously found Vf = (3x2 —-3,3y° - 3) with critical
points at (-1,-1), (1,1), (1,-1), and (-1,1). Use the Hessian determinant to identify
maxima, minima, and saddle points:

D(x,y) = [Hf(x,y)| =

o*f

o*f

ox*>
o0*f

Oxoy
o*f

0yox

o( o

ayz

J/
Ll Rl
N\

Created by Christopher Grattoni. All rights reserved.
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Let f(x,y) = x* + y* —3x —3y. We previously found Vf = (?:x2 —-3,3y° - 3) with critical

points at (-1,-1), (1,1), (1,-1), and (-1,1). Use the Hessian determinant to identify
maxima, minima, and saddle points:

o*f 0*f
ox> Oxoy| 6x O
D(x,y) = [Hf(x,y)| = = =36
V) =Ry =] oo | |o Gy‘ i
oyox oy’
Test (1,1): D(a,b) | f_(a,b) Conclusion
D(1,1) =36 > 0 + - (a,b,f(a,b)) i.s a local mainx.imum.
+ + (a,b,f(a,b)) is a local minimum.
fxx (1,1) = GX‘(l,l) =6>0 - n/a (a,b,f(a,b)) is a saddle point.
0 n/a The test is inconclusive.

Hence, (1,1,f(1,1)) is a local minimum!



md Minimums

f »

Let f(x,y) = x* + y* —3x —3y. We previously found Vf = (?:x2 —-3,3y° - 3) with critical

points at (-1,-1), (1,1), (1,-1), and (-1,1). Use the Hessian determinant to identify
maxima, minima, and saddle points:

o*f o*f
ox* oxoy| |6x O
D(x,y) = |Hf(x,y)| = = =36
V) =iyl = | |0 ey T

oyox oy’
Test (-1,-1): D(a,b) | f_(a,b) Conclusion
D(-1,-1)=36>0 + — (a,b,f(a,b)) is a local maximum.
f (-1,-1) = GX‘ —_6<0 + + (a,b,f(a,b)) is a local minimum.
xx ! B (-1-1) — n/a (a,b,f(a,b)) is a saddle point.

0 n/a The test is inconclusive.

Hence, (—-1,-1,f(-1,-1)) is a local maximum!



Sao CenUNRAGRHAINDERIVATIVE

ey 1Yzl |m||m,g,g__r_‘_l,g_l,'_\/_f'j‘_'ljrr||rr|
f

Let f(x,y) = x* + y* —3x —3y. We previously found Vf = (?:x2 —-3,3y° - 3) with critical

points at (-1,-1), (1,1), (1,-1), and (-1,1). Use the Hessian determinant to identify
maxima, minima, and saddle points:

o*f 0°f
ox* oxoy| |6x O
D(x,y) = Hf(Xx,y)| = = =36
(x,y) = |Hf(x,y)| 2 | |0 Gy‘ Xy
oyox oy’
. - D(a,b) | f_(a,b) Conclusion
TESt (1' 1) : + - (a,b,f(a,b)) is a local maximum.

D(l' _1) — _36 < 0 + + (a,b, f(a,b)) is a local minimum.
— n/a (a,b,f(a,b)) is a saddle point.
0 n/a The test is inconclusive.

Hence, (1,—1,f(1,-1)) is a saddle point!



Sao CenUNRAGRHAINDERIVATIVE

ey 1Yzl |m||m,g,g__r_‘_l,g_l,'_\/_f'j‘_'ljrr||rr|
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Let f(x,y) = x* + y* —3x —3y. We previously found Vf = (?:x2 —-3,3y° - 3) with critical

points at (-1,-1), (1,1), (1,-1), and (-1,1). Use the Hessian determinant to identify
maxima, minima, and saddle points:

o*f 0°f
ox* oxoy| |6x O
D(x,y) = Hf(Xx,y)| = = =36
(x,y) = |Hf(x,y)| 2 | |0 Gy‘ Xy
oyox oy’
. - D(a,b) | f_(a,b) Conclusion
TESt ( 1' 1) : + - (a,b,f(a,b)) is a local maximum.

D(_l' 1) = _36 < 0 + it (a,b, f(a,b)) is a local minimum.
— n/a (a,b,f(a,b)) is a saddle point.
0 n/a The test is inconclusive.

Hence, (-1,1,f(—1,1)) is a saddle point!



Let f(x,y) = x° + y* —3x —3y. We previously found Vf = (3x2 -3,3y* - 3).

Find all local maxima/minima on this surface.

Summary:

Local Maximum: (—-1,—-1)
Local Minimum: (1,1)
Saddle Points: (1,-1) and (-1,1)

Created by Christopher Grattoni. All rights reserved.



Let f(x,y) = x* + y’ —3x - 3y. We previously found Vf = (3x2 -3,3y* - 3)

with a local maximum at (-1,-1) and aillolcall F’.‘a?‘.i'.“.“.“f'.?t .(.1.':.")'. _

One idea: if your friend likes to .

swim, you could ask him/her to
swim on the contour plot. The
local max would be where the
water is hottest and the minimum

would be the coldest. You've helped ” /

your friend experience the third
dimension as temperature rather

than a spatial dimension. Lot

10k

!
§
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.
/
{
i

e

[ Swimming 1 to the level curves toward
- . the max leads you to the greatest initial

—— temperature increase.

S, |

-

D —
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Let f(x,y,z) = (x—1)* + (y — 2)* + z*>. We can plot level surfaces of this

4D-surface by letting k = (x —1)* + (y — 2)? + Z* for various values of k.
Task: Look at the level surfaces in

Mathematica by clicking the slider %
(don't drag it though)

We could experience 4D like
the swimmer experienced 3D.
We could swim in 3D space 4

and experience the fourth
dimension as temperature.

The gradient vectors tell
us the path to the greatest

initial temperature increase L

from a g iven pOi nt in Space. Christopher Grattoni. All rights reserved.
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Let T(x,y,z) = 8(x* —x*> +y* —y?) + z+ 2. We can plot level surfaces of this
4D-surface by letting k = 8(x* — x* + y* —y?) + z+ 2 for various values of k.

This time, treat T(x,y,z) as a function that
takes a position in space (x,y,z) and outputs
the temperature at that point. So our
swimmer can experience an extra
dimension as the temperature at that
particular point. Level surfaces can be
found by graphing various T(x,y, z) = k.

Task: Look at this surface in Mathematica.
Click (don't drag) around the slider and
think about how a 3D swimmer would
experience this diving tank.

Created by Christopher Grattoni. All rights reserved.
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Let T(x,y,z) = 8(x* —x*> +y* —y?) + z+ 2. We can plot level surfaces of this
y y

4D-surface by letting k = 8(x* — x* + y* —y?) + z+ 2 for various values of k.
Discussion Questions:

1) Where should the swimmer go
for the coolest locations?

2) The hottest?

3) What does a level surface mean
in the context of this scenario?

4) Given the particular level surface the
swimmer is on, in what direction does
he swim for the greatest initial
temperature iNCrease? ... s s avigns resenca



Graph Surface in 3-D

e
BN

Level Sets Level Curve
k = f(x,y)
Gradient Vectors 2D Vectors
of of
Vi=| —,—
ox oy

(2D vectors that are 1 to
the level curves, NOT the
3D surface itself)

(Hyper)Surface in 4-D

Can't truly graph it!

Level Surface

k = f(x,y,2)

3D Vectors vf of of of
- ax [ ay [ az

(3D vectors that are 1L to

the level surface, NOT the

4D surface itself)



* Read about LaGrange multipliers!



