
Lesson 4: 

Gradient Vectors, Level Curves, 

Maximums/Minimums/Saddle Points 



Example 1: The Gradient Vector 

 2 df
Let f(x) x . Then 2x. This can be thought of as a vector that

dx

tells you the direction of greatest initial increase on the curve. The 

magnitude of the vector tells you how steep the increase.

Let's try a few 

df
x-values in :

dx
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Example 1: The Gradient Vector 

We can put the tails of our vectors on the curve itself

to get picture that's a little easier to work with:

What do you notice about the magnitude of the gradient vector at x=0?
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Example 2: The Gradient Vector 

We can try again with f(x) sin(x) :

 
 

3
What do you notice about the magnitude of the gradient vector at x and x ?

2 2
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That's right! The places where we have horizontal

tangent lines are where the gradient vector is the 

zero vector. So the places where the gradient vector 

is the zero vector are candidates for local extrema.
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Definition: The Gradient Vector 

1 2 n
Let f(x ,x ,...,x ) be a function of n variables. Then the 

gradient vector is defined as follows:

   
       1 2 n

f f f
f , ,...,

x x x

The gradient vector is designed to point in the direction 

of the greatest INITIAL increase on your curve/surface/etc.

Notice that the gradient vector always lives in one dimension

lower than function does. Surface in 3D space? 2D gradient vector. 

Curve in 2D space? 1D gradient vector. Hypersurface in 4D? 3D

gradient vector.



Definition: The Gradient Vector 

1 2 n
Let f(x ,x ,...,x ) be a function of n variables and let

   
       1 2 n

f f f
f , ,...,

x x x





Ex. Find f given

f(x) sin(x).

   



3 3Ex. If f(x,y) x y 3x 3y,

find f.

  



1 2 n
Theorem: If f(x ,x ,..., x ) is a function of n variables, then the

candidates for local maxima/minima are where f 0,0,...,0

or where f is undefined.
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 f(x) cos(x)   2 2f(x,y) 3x 3,3y 3   

NOTE : These are just CANDIDATES, not necessarily extrema!!
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Example 3: A Surface and Gradient Field 

2 2 2Let f(x,y) (cos (x) cos (y)) . Then we can use Mathematica

f f
to find f(x,y) , .

x y

  

  
   

  

This is the surface plotted together 

with a projected gradient field below it.

    3 2f(x,y) 4cos (x)sin(x) 4cos(x)sin(x)cos(y),2cos (x)sin(y) 2cos(y)sin(y)

The surface is like a mountain 

and the gradient vector is like a

magic compass that, no matter where 

you are standing on the mountain,

points in the immediate direction that 

is the steepest uphill.
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Example 3: A Surface and Gradient Field 

2 2 2 f f
Let f(x,y) (cos (x) cos (y)) and f(x,y) , :

x y

  
      

  
One of the main reasons we like to plot

the gradient vectors (called a gradient 

vector field) is that we can figure out 

quite a bit about a 3D surface without 

the hard work of a 3D plot: 

    3 2f(x,y) 4cos (x)sin(x) 4cos(x)sin(x)cos(y),2cos (x)sin(y) 2cos(y)sin(y)

The vectors tell you the direction of 

greatest initial increase on the surface 

at a given point, and their magnitude 

tells you how steep it is!
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Example 4: A Surface and Contour Plot 

2 2 2 f f
Let f(x,y) (cos (x) cos (y)) and f(x,y) , :

x y

  
      

  
We can also generate a "contour plot" of our

surface. This is also called a set of level curves.

These are merely slices of the surface projected 

onto the xy-plane:



Example 4: Contour Plots in Real Life 

This is merely just a technique for representing 3D data in 2D.
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Example 4: A Surface and Contour Plot 

We can put our contour plot 

and gradient field together:

2 2 2 f f
Let f(x,y) (cos (x) cos (y)) and f(x,y) , :

x y

  
      

  

Recall that the gradient always

points in the direction of 

greatest initial increase, so it 

must get you from one level 

curve to the next as efficiently 

as possible. That is, the 

gradient vector is 

perpendicular to the level 

curve passing through its tail.
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Example 4: A Surface and Contour Plot 

  
      

  

2 2 2 f f
Let f(x,y) (cos (x) cos (y)) and f(x,y) , :

x y

Theorem: The gradient 

is always perpendicular 

to the level curve 

through its tail.

Note :  The gradient

is not necessarily 

perpendicular to the 

surface itself, just its 2D

level curves!

Proof: Later in the notes.



Example 5: The Gradient Points in the 

Direction of Greatest Initial Increase 

  
      

  



2 2 2 f f
Let f(x,y) (cos (x) cos (y)) and f(x,y) , . Show that if we are at point 

x y

(1,1,f(1,1)) and move in the direction of the gradient f(1,1), we must go up before we 

go down:

  

 

Here is a plot of f(x(t),y(t)) versus t

where (x(t),y(t)) (1,1) t f(1,1)

for 0 t 1 :
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Example 6: A Path Along our Surface 

     2 2 22 (x(t),y(t)) cos (1 t),sin(2

(x(

Let and l

t),y(t)

f(x,y) (cos

,f(x(t),y(

et .

Finally, plot ,a path o

(x) cos

n the 

(y

su

t)

rft))

))

ace.

: the surface (a mountain)

: a parametric path (map of a hiking trail)

: path on the surfa

(x,y,

ce 

(t

(x(t)

he ac

,y(t),f(x(

tual hikin

f(x,y)

g trai

t), y(

l on 

(x

th

)

a

(

t

t

 

t), y(t

mount

)

))

)

ain)
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Example 6: A Path Along our Surface 

    2 2 2 2

(x(t),y(t),f(x(t),y(t))

Let and let .

Plot ,a path on the sur

(x(t),y(t)) cos (1 t),sin(2t)

face. Now,add i

gradi

f(x,y

ent v

) (cos (x) co

ectors on t

s

h

(

e

y

 

n t

p

))

he

ath:

The surface is a like a mountain

and the path is a hiking trail on 

that mountain, but the gradient

vectors are basically a magic compass

telling you the steepest direction 

from where you are standing. You

can use this to figure out how steep

the road ahead is.
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Example 6: Tangent Vectors and 

Gradient Vectors on Our Path 

 
 







2 2

2

2Let and let

. T gradient 

vectors

( he

alo

x(t), y

ng the p

f(x

ath

(t)) cos (1 t),sin

are blue a t

,y) (cos (x) co

angent vector

s

s

(y))

nd 

are ora

(2t)

nge.

Let's go point by point and describe 

what's happening on the hiking trail:
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Example 6: Tangent Vectors and 

Gradient Vectors on Our Path 

    2 2 22Let and let .

T gradient vectors

(

he alo

x(t),y

ng the p

f(x

ath

(t)) cos (1 t),sin

are blue a t

,y) (cos (x) co

angent vector

s

s

(y))

nd are ora

(2t)

nge.

We saw the angle between the gradient,

f f
, , and the tangent vector, (x'(t),y'(t)),

x y

 is the key here!

  
 
  

  Recall that V W V W cos( ) :

f f
If the angle between , and (x'(t),y'(t)) is acute,

x y

f f
, (x'(t),y'(t))>0 and we are walking uphill.

x y

  
 
  

  
 

  

f f
If the angle between , and (x'(t),y'(t)) is obtuse,

x y

f f
, (x'(t),y'(t))<0 and we are walking downhill.

x y

  
 
  

  
 

  



The Derivative of f(x(t),y(t)) With Respect to t 

f f
If the angle between , and (x'(t),y'(t)) is acute,

x y

f f
, (x'(t),y'(t))>0 and we are walking uphill.

x y

  
 
  

  
 

  

f f
If the angle between , and (x'(t),y'(t)) is obtuse,

x y

f f
, (x'(t),y'(t))<0 and we are walking downhill.

x y

  
 
  

  
 

  

Walking uphill is like saying f(x(t),y(t)) is increasing at t.

Walking downhill is like saying f(x(t),y(t)) is decreasing at t.

The 2D Chain Rule:

df(x(t),y(t)) f f
, (x'(t),y'(t))

dt x y

  
  

  
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The Chain Rule in n-Dimensions 

df(x(t),y(t)) f f
The 2D Chain Rule: , (x'(t),y'(t))

dt x y

  
  

  

1 n

1 n

1 n

Chain Rules in Other Dimensions:

df(x(t))
1D : f '(x(t))x'(t)

dt

df(x(t), y(t),z(t)) f f f
3D : , , (x'(t),y'(t),z'(t))

dt x y z

df(x (t),..., x (t)) f f
n-D: ,..., (x '(t),...,x '(t))

dt x x



   
  

   

  
     

times"The   the dederivative of rivative of t the o he insu itside de."

(Gradient) (Dot Product) (Tangent Vector)
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Chain Rule Proves the Gradient is 

Perpendicular to the Level Curve 

Theorem: The gradient is always perpendicular to the level curve through its tail.

Proof: We will only show this for a surface z f(x,y) whose 

level curve c f(x,y) can be parameterized by (x(t),y(t)).





Then a tangent vector on the level curve can be described 

by (x'(t),y'(t)).

f f
Next, the gradient is f(x,y) , .

x y

  
   

  
For them to be perpendicular, we want their dot product 

to be 0:

f f
, (x'(t),y'(t))

x y

  
 

  

df(x(t),y(t))

dt


0 But c f(x,y),  and the 

derivative of a constant is 0...



By Chain Rule...

Another way to think of this is a level curve is defined as a path 

df(x(t),y(t))
on the surface where your height stays constant. So 0...

dt


So the gradient is  to the level curve.



Example 7: Using the Chain Rule 

 2 df
Let f(x,y) x xy and let (x(t),y(t)) cos(t),sin(t) . Find :

dt
  

f f
,

x

df(x(t),y(t)

y

)

dt
(x'(t),y'(t))

  
 
 


 



 
f f

f(x,y) , 2x y,x
x y

  
    

  
 2cos(t) sin(t),cos(t) 

(x'(t),y'(t)) ( sin(t),cos(t)) 

 2cos(t) sin(t),cos( ( sin(t),co () ))t s t   

2 22sin(t)cos(t) sin (t) cos (t)   

cos(2t) sin(2t) 
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Example 8: Another Visit to Our Surface 

 

3 3Let f(x,y) x y 3x 3y and suppose you are standing on the surface at the 

point 2,3,20 . If you decide to walk in the direction of , do you go uphill 

or downhill on f(x,y) when you take your first st

(

e

7,2)

   



p?

 2 2f(x,y) 3x 3,3y 3   

   7,9, 2 124 5  

Since this dot product is negative, we know 

our first step will be downhill. 

This negative tells us the angle between the

gradient at (2,3) and our direction vector is 

obtuse. We are walking against the direction 

advised by our Gradient Compass: downhill!

 f(2,3) 9,24 



Example 9: Identifying Local Extrema 

from the Gradient 

 3 3 2 2Let f(x,y) x y 3x 3y. We previously found f(x,y) 3x 3,3y 3 .

Find all local maxima/minima on this surface.

       

  

Theorem: The candidates for

local extrema are where f 0,0 ,

or where it is undefined.

 2 2f(x,y) 3x 3,3y 3 (0,0)    

   x 1,y 1

   
   



  

Critical Points:

1,1 , 1, 1 ,

1,1 , 1, 1
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 

  

Why are the points where f (0,0) candidates

for local extrema? Well, points where we have

f (0,0) 0 indicates that the surface is perfectly

flat here. That is, the tangent planes to the surface

at those points are horizontal. So these are locations

where we could have a local maximum or minimum.
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Example 9: Identifying Local Extrema 

from the Gradient 

 3 3 2 2Let f(x,y) x y 3x 3y. We previously found f(x,y) 3x 3,3y 3 .

Find all local maxima/minima on this surface.

       

 and are called

:

They bring you up in one 

direction down in the other. 

T

(1, 1) ( 1,1)

saddle p

hese are not extr

oints

ema.

Task: Look at the surface in 

Mathematica and convince 

yourself these are not extrema.

          

Critical Points:

1,1 , 1, 1 , 1,1 , 1, 1



Example 9: Identifying Local Extrema 

from the Gradient 

 3 3 2 2Let f(x,y) x y 3x 3y. We previously found f(x,y) 3x 3,3y 3 .

Find all local maxima/minima on this surface.

       

Saddle point analogy:

A Saddle Point is to 3D as a Non-Max/Min Horizontal Tangent is to 2D. 
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Example 9: Identifying Local Extrema 

from the Gradient 

 3 3 2 2Let f(x,y) x y 3x 3y. We previously found f(x,y) 3x 3,3y 3 .

Find all local maxima/minima on this surface.

       

 

 

The gradient vectors show

that is a local max

(the surrounding vectors all 

point

( 1, 1)

( 1to , 1)).

    

Remaining Candidates:

1,1 and 1, 1

The gradient vectors show

that is a local min

(the surrounding vectors all 

point away fr

(1,1)

(om 1,1)).

Saddle points have gradient

vectors both flowing in and out.



Example 9: Identifying Local Extrema 

from the Gradient 

 3 3 2 2Let f(x,y) x y 3x 3y. We previously found f(x,y) 3x 3,3y 3 .

Find all local maxima/minima on this surface.

       









Summary:

Local Maximum:

Local Minimum:

Saddle Poi (1,

( 1

1

,

)

1)

nts: a (

(1,1)

nd 1,1)
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Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 

You might wonder how to identify

maxima, minima, and saddle points

without having to use Mathematica

to plot the gradient field. For this, 

we generalize the second derivative test.
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Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 

Created by Christopher Grattoni. All rights reserved. 







Recall: The second derivative states that if f '(a) 0, then:

                  If f ''(a) 0, then we have a local maximum at x = a

                  If f ''(a) 0, then we have a local minimum at x = a

                  If f ''(a) 0, then the test is inconclusive.

5 3

Example: Let f(x) :
3

f '( 2) 0 & f''( 2) 0 :  local maximum at x 2.

f '(2) 0 & f''(2) 0 : local minimum at x 2.

f '(0) 0 & f''(0) 0 : test  i

x 4

nconclusive at x 0.

x

5


     

  

  





Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 

Now for a maximum, we need to be concave down

in the x-direction AND y-direction. Likewise, for a minimum,

we need to be concave up in the x-direction AND y-direction.

If we mix between the two, we have a saddle point. 
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  
 

  
  
 
    

2 2

2

2 2

2

The tool that lets us analyze this is the Hessian Matrix:

f f

x yx
Hf(x,y)

f f

y x y



Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 
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2 2

2

2 2

2

f f

x yx
Hessian Determinant: D(x,y) Hf(x,y)

f f

y x y

 

 
 

 

  

xx
D(a,b) f (a,b) Conclusion

(a,b,f(a,b)) is a local maximum.

(a,b,f(a,b)) is a local minimum.

n / a (a,b,f(a,b)) is a saddle point.

0 n / a The test is inconclusive.

 

 





Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 
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 

 



xx
D(a,b) f (a,b) Conclusion

(a,b,f(a,b)) is a local maximum.

(a,b,f(a,b)) is a local minimum.

n / a (a,b,f(a,b)) is a saddle point.

0 n / a The test is inconclusive.

xx

How does this work? Well, if D(a,b) is positive, it is telling us that the "second

derivatives in the x-direction and y-direction" are pointing the same way. 

So if D(a,b) is positive and f (a,b) is neg

xx

ative, then we are "concave down" in 

both directions which is a local maximum. If D(a,b) is positive and f (a,b) is

positive, then we are "concave up" in both directions, which is a local minimum.

If D(a,b) is negative, then the x-direction and y-direction second derivatives

are "pointing in different directions," or a saddle point. 

If D(a,b) is zero, we can't tell.



Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 
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        

   

3 3 2 2Let f(x,y) x y 3x 3y. We previously found f 3x 3,3y 3 with critical

points at ( 1, 1), (1,1), (1, 1), and ( 1,1). Use the Hessian determinant to identify

maxima, minima, and saddle points:

   

   

   

   

2 2

2

2 2

2

3 3 3 3

3 3 3 3

2 2

2 2

f f

x yx
D(x,y) Hf(x,y)

f f

y x y

x y 3x 3y x y 3x 3y
x x x y

x y 3x 3y x y 3x 3y
y x y y

3x 3 3y 3
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  

     
       

      


     
       

      

 
 

 

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 

 







Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 
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        

   

3 3 2 2Let f(x,y) x y 3x 3y. We previously found f 3x 3,3y 3 with critical

points at ( 1, 1), (1,1), (1, 1), and ( 1,1). Use the Hessian determinant to identify

maxima, minima, and saddle points:

2 2

2

2 2

2

f f

x y 6x 0x
D(x,y) Hf(x,y) 36xy

0 6yf f

y x y

 

 
   

 

  

 

  
xx (1,1)

Test (1,1) :

D(1,1) 36 0

f (1,1) 6x 6 0

 

 



xx
D(a,b) f (a,b) Conclusion

(a,b,f(a,b)) is a local maximum.

(a,b,f(a,b)) is a local minimum.

n / a (a,b,f(a,b)) is a saddle point.

0 n / a The test is inconclusive.

Hence,  (1,1,f(1,1)) is a local minimum!
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 

 

   

     
xx ( 1, 1)
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 

 


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(a,b,f(a,b)) is a local maximum.

(a,b,f(a,b)) is a local minimum.

n / a (a,b,f(a,b)) is a saddle point.

0 n / a The test is inconclusive.

   Hence,  ( 1, 1,f( 1, 1)) is a local maximum!
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xx
D(a,b) f (a,b) Conclusion
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0 n / a The test is inconclusive.
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Example 10: The Second Partial Derivative 

Test to Identify Maximums and Minimums 









Summary:

Local Maximum:

Local Minimum:

Saddle Poi (1,

( 1

1

,

)

1)

nts: a (

(1,1)

nd 1,1)
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        3 3 2 2Let f(x,y) x y 3x 3y. We previously found f 3x 3,3y 3 .

Find all local maxima/minima on this surface.



Example 11: Level Surfaces and 

Entering the Fourth Dimension 

        

 

3 3 2 2Let f(x,y) x y 3x 3y. We previously found f 3x 3,3y 3

with a local maximum at ( 1, 1) and a local maximum at (1,1).

Pretend you had a 2-dimensional

friend (Pac-Man?) who had never

visited the third dimension. How

would you explain it to him?

One idea: if your friend likes to 

swim,  you could ask him/her to 

swim on the contour plot. The

local max would be where the 

water is hottest and the minimum

would be the coldest. You've helped

your friend experience the third 

dimension as temperature rather

than a spatial dimension.

Swimming  to the level curves towards

the max leads you to the greatest initial

temperature increase.


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Example 11: Level Surfaces and 

Entering the Fourth Dimension 

    

    

2 2 2

2 2 2

Let f(x,y,z) (x 1) (y 2) z . We can plot level surfaces of this 

4D-surface by letting k (x 1) (y 2) z for various values of k.

Task: Look at the level surfaces in

Mathematica by clicking the slider

(don't drag it though)

We could experience 4D like 

the swimmer experienced 3D. 

We could swim in 3D space

and experience the fourth 

dimension as temperature.

The gradient vectors tell

us the path to the greatest

initial temperature increase

from a given point in space.



Example 11: A Different Analogy for the 

Fourth Dimension? 

4 2 4 2

4 2 4 2

Let T(x,y,z) z 2. We can plot level surfaces of this 

4

8(x x y y )

8D-surface by letting k z 2 for various values of k(x x y y ) .

   

 



 





This time, treat T(x,y,z) as a function that 

takes a position in space (x,y,z) and outputs 

the temperature at that point. So our 

swimmer can experience an extra 

dimension as the temperature at that 

particular point. Level surfaces can be

found by graphing various T(x,y,z) k. 

Task: Look at this surface in Mathematica.

Click (don't drag) around the slider and 

think about how a 3D swimmer would 

experience this diving tank.
Created by Christopher Grattoni. All rights reserved. 



Example 12: A Different Analogy for the 

Fourth Dimension? 

4 2 4 2

4 2 4 2

Let T(x,y,z) z 2. We can plot level surfaces of this 

4

8(x x y y )

8D-surface by letting k z 2 for various values of k(x x y y ) .

   

 



 





1) Where should the swimmer go 

for the coolest locations?

Discussion Questions:

2) The hottest?

3) What does a level surface mean 

in the context of this scenario?

4) Given the particular level surface the 

swimmer is on, in what direction does 

he swim for the greatest initial 

temperature increase?Created by Christopher Grattoni. All rights reserved. 
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z = f(x,y) w = f(x,y,z) 

Graph 

 

Surface in 3-D 

 

 

 

 

(Hyper)Surface in 4-D  

 

                       Can’t truly graph it! 

Level Sets 

 

Level Curve 

 

k = f(x,y) 

 

 

Level Surface 

 

k = f(x,y,z) 

Gradient Vectors 

 

 

 

 

 

 

2D Vectors 3D Vectors 
  

   
  

f f
f ,

x y

   
   

   

f f f
f , ,

x y z

(2D vectors that are  to 

the level curves, NOT the

3D surface itself)

(3D vectors that are  to 

the level surface, NOT the

4D surface itself)

Final Thoughts: f(x,y) versus f(x,y,z) 



• Read about LaGrange multipliers! 
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