
Lesson 7 

Integrals for Measuring Flow 



Example 1: Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 



  

Let Field(x,y) (y,2x)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (-1,1)

Recall that this is like a set of 

underwater train tracks being

buffeted by a swirling, violent 

current.

Measure the net flow of the vector field along the curve:

We can get a better picture of what 

is going on by just plotting the field

vectors whose tails are on the curve:
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Example 1: Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 



  

Let Field(x,y) (y,2x)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (-1,1)

Can we tell if it is clockwise or 

counterclockwise yet?

Measure the net flow of the vector field along the curve:

How do we get a better picture of what

is going on based on what we learned

last chapter?
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Example 1: Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 



  

Let Field(x,y) (y,2x)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (-1,1)

Yes, at each point, we can plot the push

of the field vector in the direction of 

the tangent vector to the curve:

Measure the net flow of the vector field along the curve:





Field(x(t),y(t)) (x'(t),y'(t))
(x'(t),y'(t))

(x'(t),y'(t)) (x'(t),y'(t))

It looks like it is a net counterclockwise

flow of the vector field along the curve, 

but are we 100% positive about this?
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Example 1: Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 



  

Let Field(x,y) (y,2x)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (-1,1)



Our real measure is really what happens 

to Field(x(t), y(t)) (x'(t), y'(t)) around 

the curve since this records when the 

field helps or hurts our movement in 

the direction of the parameterization,

and by how much:

Measure the net flow of the vector field along the curve:




2

0

Integrate it :

Field(x(t),y(t)) (x'(t), y'(t)) dt
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Example 1: Measuring the Net Flow of a 

Vector Field ALONG a Closed Curve 



  

Let Field(x,y) (y,2x)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (-1,1)

Measure the net flow of the vector field along the curve:




2

0

Field(x(t),y(t)) (x'(t),y'(t)) dt



    
2

0

(2sin(t) 1,2cos(t) 2) ( sin(t),2cos(t)) dt



    
2

2 2

0

2sin (t) sin(t) 4cos (t) 4cos(t) dt

 2
Positive! The net flow of the vector field along the curve is 

in the direction of the parameterization (counterclockwise).
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The Line Integral: Formalizing What We 

Just Did 

So far, we only integrated because we had a vague notion that

integrating this expression will accumulate all of the little pushes

with or against the curve and tell us whether we have a net push

in  the clockwise or counterclockwise direction. We can do better:


b

a

f(x) dx 
C

F(x,y) dc

Function of a single variable

Interval [a,b] along the x-axis

Integrate with respect to 

left-right (x) movement: dx

f(x) "times" dx

Two-component vector field, F(x,y)

Curve in space, C, with 

parameterization c

Integrate with respect to movement 

along the parameterization of the curve: dc

F(x,y) "dot product" dc
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The Line Integral: Formalizing What We 

Just Did 

 
 Let C be a curve parameterized by c(t)=(x(t),y(t)) for a t b,

and let F(x,y) be a vector field, F(x,y)=Field(x,y)= m(x,y),n(x,y) .


C

F(x,y) dc  
b

a

dc
F(x(t),y(t)) dt

dt

 
b

a

F(x(t),y(t)) c'(t)dt

 
b

a

Field(x(t),y(t)) (x'(t),y'(t))dt

This is called the line (path) integral of the vector field along the curve.



Other Ways Of Writing The Line 

Integral 

 

 

Let Field(x,y) m(x,y),n(x,y) and let C be a curve 

parameterized by (x(t),y(t)) for a t b.

 
C

m(x,y)dx n(x,y)dy

b

a

dydx
m(x(t), y(t)) dt n(x(t), y(t)) dt

dt dt
 

 
b

a

m(x(t), y(t))x'(t) n(x(t), y(t))y'(t) dt 

 
b

a

m(x(t), y(t)),n(x(t), y(t)) (x'(t), y'(t))dt 

b

a

Field(x(t), y(t)) (x'(t), y'(t))dt



If C is a closed curve with a 

counterclockwise parameterization: 

If C is not closed: 

These integrals are used to compute net 

flow of the vector field along the closed 

curve (clockwise or counterwise or 0). 

They can be modified to measure flow of 

the vector field across the closed curve 

(inside to outside or outside to inside) with 

relative ease. 

Without a closed curve, the integral is 

measured whether the net flow along the 

open curve is in the direction of 

parameterization or against it, and whether 

the net flow across the open curve is from 

“above to below” or “below to above.” 

Put it All Together: Measuring the Net Flow 

of a Vector Field ALONG a Curve 

 



 

 







b

a

b

a

C

Integral :

Field(x(t), y(t)) (x'(t), y'(t))dt

m(x(t), y(t))x'(t) n(x(t), y(t))y'(t) dt

m(x,y)dx n(x,y)dy

 



 

 







b

a

b

a

C

Integral :

Field(x(t), y(t)) (x'(t), y'(t))dt

m(x(t), y(t))x'(t) n(x(t), y(t))y'(t) dt

m(x,y)dx n(x,y)dy
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The physics interpretation of “flow along” is “work.” 



Put it All Together: Measuring the Net Flow 

of a Vector Field ALONG a Curve 

Let C be a closed curve with a COUNTERCLOCKWISE parameterization :

 CIf m(x,y)dx n(x,y)dy 0, then 

the net flow of the vector field along the 

curve is counterclockwise.

 CIf m(x,y)dx n(x,y)dy 0, then

the net flow of the vector field along  

the curve is clockwise.

Cm(x,y)dx n(x,y)dy can equal 0.
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Example 2: Measuring the Net Flow of a 

Vector Field Along Another Closed Curve 

 
    

 



2

2 2

C

x 1
Let Field(x,y) (3y, x )  be a vector field acting on the ellipse y 1.

2

Compute m(x,y)dx n(x,y)dy :

Field and Curve : Vectors on Curve :

Component of Field

Vectors in the

Direction of the 

Tangent Vectors
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 

  2

Field(x,y) m(x,y),n(x,y)

(3y, x )

Example 2: Measuring the Net Flow of a 

Vector Field Along Another Closed Curve 

 

 
   

 


2

2

2

C

Let Field(x,y) (3y, x )  be a vector field acting on the 

x 1
ellipse y 1. Compute m(x,y)dx n(x,y)dy :

2

Cm(x,y)dx n(x,y)dy



 

E(t) (x(t),y(t))

(2cos(t),sin(t)) (1,0)

  
b

a

m(x(t),y(t))x'(t) n(x(t),y(t))y'(t) dt



   
2 2

2

0

3cos(t) 4cos (t) 4cos d(t) 6si tn (t)

Negative! The net flow of the vector field along the curve is

against the direction of the parameterization (clockwise).

 Counterclockwise 

10  



Example 3: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

 

  

Let Field(x,y) (y,x y)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (2,0)

Measure the net flow of the vector field across the curve:

We can get a better picture of what 

is going on by just plotting the field

vectors whose tails are on the curve:
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Example 3: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

 

  

Let Field(x,y) (y,x y)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (2,0)

Measure the net flow of the vector field across the curve:

Better, but we can improve 

our picture further:
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Example 3: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

 

  

Let Field(x,y) (y,x y)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (2,0)

At each point, we can plot the push

of the field vector in the direction of 

the normal vector to the curve:

Measure the net flow of the vector field across the curve:

 


  

Field(x(t),y(t)) (y'(t), x'(t))
(y'(t), x'(t))

(y'(t), x'(t)) (y'(t), x'(t))

It looks like it is a net flow of the 

vector field across the curve from

inside to outside, but we want to 

verify this numerically:
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Example 3: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

 

Our real measure is really what happens 

to Field(x(t),y(t)) (y'(t), x'(t)) around 

the curve since this records when the 

field pushes us left or right relative to our 

direction of travel, and by how much:



 
2

0

Integrate it :

Field(x(t),y(t)) (y'(t), x'(t)) dt

 

  

Let Field(x,y) (y,x y)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (2,0)

Measure the net flow of the vector field across the curve:
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Example 3: Measuring the Net Flow of a 

Vector Field ACROSS a Closed Curve 

 

  

Let Field(x,y) (y,x y)  be a vector field acting on the curve 

E(t) (x(t),y(t)) (cos(t),2sin(t)) (2,0)

Measure the flow of the vector field across the curve:



 
2

0

Field(x(t),y(t)) (y'(t), x'(t)) dt



   
2

0

(2sin(t),cos(t) 2sin(t) 2) (2cos(t),sin(t)) dt



  
2

2

0

2sin(t) 5cos(t)sin(t) 2sin (t) dt

 2
Positive! The net flow of the vector field across the curve is 

with the direction of the normal vectors. For a counterclockwise 

parameterization, this is from inside to outside.



If C is a closed curve with a 

counterclockwise parameterization: 

If C is not closed: 

With a closed curve, the integral measures 

whether the net flow ACROSS the closed 

curve is from “inside to outside” or from 

“outside to inside.” 

Without a closed curve, the integral  

measures whether the net flow ACROSS 

the open curve is from above to below the 

curve or from below to above.  

Put it All Together: Measuring the Net Flow 

of a Vector Field ACROSS a Curve 

 

 

  

  







b

a

b

a

C

Integral :

Field(x(t), y(t)) (y'(t), x'(t))dt

n(x(t), y(t))x'(t) m(x(t), y(t))y'(t) dt

n(x,y)dx m(x,y)dy

 

 

  

  







b

a

b

a

C

Integral :

Field(x(t), y(t)) (y'(t), x'(t))dt

n(x(t), y(t))x'(t) m(x(t), y(t))y'(t) dt

n(x,y)dx m(x,y)dy
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The physics interpretation of “flow across” is “flux.” 



Put it All Together: Measuring the Net Flow 

of a Vector Field ACROSS a Curve 

Let C be a closed curve with a COUNTERCLOCKWISE parameterization :

C
If n(x,y)dx m(x,y)dy 0, then 

the net flow (flux) of the vector field

across the curve is from inside to outside. 

  

C
If n(x,y)dx m(x,y)dy 0, then

the net flow (flux) of the vector field

across the curve is from outside to inside.

  

 C n(x,y)dx m(x,y)dy can equal 0.
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Example 4: Measuring the Net Flow of a 

Vector Field Across Another Closed Curve 

    

   
2 2

C

Let Field(x,y) ( x cos(y), y sin(x))  be a vector field acting 

on the circle x y 1. Compute n(x,y)dx m(x,y)dy :

Created by Christopher Grattoni. All rights reserved. 

Field and Curve : Vectors on Curve :

Component of Field

Vectors in the

Direction of the 

Normal Vectors
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 

    

Field(x,y) m(x,y),n(x,y)

( x cos(y), y sin(x))

Example 4: Measuring the Net Flow of a 

Vector Field Across Another Closed Curve 

    

   
2 2

C

Let Field(x,y) ( x cos(y), y sin(x))  be a vector field acting on 

the circle x y 1. Compute n(x,y)dx m(x,y)dy :

 C n(x,y)dx m(x,y)dy





c(t) (x(t),y(t))

(cos(t),sin(t))

   
b

a

n(x(t),y(t))x'(t) m(x(t),y(t))y'(t) dt

  2

Negative! The net flow of the vector field 

across the curve is from outside to inside.

 Counterclockwise 



Example 5: The Net Flow of a Gradient 

Field Along a Closed Curve 




 

2 2x y
Start with a surface f(x,y)

2xsin(x) 3ycos(

e

y)



Now let's take a look at the 

gradient field, f, associated 

with the surface:
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Example 5: The Net Flow of a Gradient 

Field Along a Closed Curve 

  Consider an elliptical path (x(t),y(t)) on the surface for 0 t 2 :



  
  

 


  
 

2 2x y

f f
Now plot f(x,y) , for

2xsin(x) 3ycos(y)
f(x,y) :

x y e

 
     

      
    

3 3
0.9cos t ,1.1sin t 0,0.1

2 2

Compute the net flow of the gradient

field along the curve:



2

0

Field(x(t),y(t)) (x'(t),y'(t))dt



 
2

0

df(x(t),y(t))
dt (Chain Rule)

dt

Let's interpret this using the surface...

2

0

f f
, (x'(t), y'(t))dt

x y

   
  

  

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Example 5: The Net Flow of a Gradient 

Field Along a Closed Curve 




2

0

Field(x(t),y(t)) (x'(t),y'(t))dt



 
2

0

df(x(t),y(t))
dt

dt



This represents the net change in height

(altitude) on the curve from 0 to 2  

along the path (x(t),y(t)).

What should this be for our

closed curve?

Yes! 0!!  The net flow of a gradient field

along a closed curve is 0.

f(x(2 ),y(2 )) f(x(0),y(0))   

0

2

0

f f
, (x'(t), y'(t))dt

x y

   
  

  

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Summary: The Net Flow of a Gradient 

Field Along a Closed Curve 

 
 

Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let C be a 

simple closed curve with a parameterization (x(t),y(t)) for a t b.

 
b

a

1) Field(x(t),y(t)) (x'(t),y'(t))dt 0

 C2) m(x,y)dx n(x,y)dy 0

3) The net flow of a gradient field along a simple closed curve is 0.

Why is this intuitively true?

How do we know a closed curve can't be a trajectory 

of a gradient field?

Is the net flow of a gradient field ACROSS a closed curve 0?
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Summary: The Net Flow of a Gradient 

Field Along a Closed Curve 

 
 

Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let C be a 

simple closed curve with a parameterization (x(t),y(t)) for a t b.

 
b

a

1) Field(x(t),y(t)) (x'(t),y'(t))dt 0

 C2) m(x,y)dx n(x,y)dy 0

3) The net flow of a gradient field along a simple closed curve is 0.

For this reason, gradient fields are called 

conservative vector fields. We also say 

that gradient fields are irrotational.



Example 6: Is the Net Flow of ANY Vector 

Field Along a Closed Curve Zero? 




2

0

Field(x(t),y(t)) (x'(t),y'(t))dt  0.548155

So the net flow of a general 

vector field along a closed curve 

need not equal 0.

 

 
     

      
  





x y

3 3
0.9cos t ,1.1sin t

Let Field(x,y) ye ,xe and keep the

0,0.1
2

same curve,

2

The net flow of the vector field

along the curve is counterclockwise.

 Counterclockwise 
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Example 7: How Do We Know When We 

Have a Gradient Field? 

Here are a few vector fields. Try to classify them as 

"gradient fields", or "not gradient fields":

The last two examples clearly show the advantages to knowing whether 

our vector field is a gradient field or not. This motivates us to ask the 

question, "Given a vector field, how do we know if it is a gradient field?"

 2 2xy ,x y

 x yye ,xe

   x 1, y 4

Vector Field Gradient? Why?
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The Gradient Test 

 A vector field, Field(x,y) m(x,y),n(x,y) , is a gradient 

field if and only if it is defined at all points (x,y) and:

 


x y

xy yx

If Field(x,y) is a gradient field, then Field(x,y)= f ,f . 

So f f .

Proof of "if" Part of Theorem:

n(x,y) m(x,y)

x y

 


 

Created by Christopher Grattoni. All rights reserved. 



Created by Christopher Grattoni. All rights reserved. 

Gradient Test (Summary): 

The Gradient Test :

n m
1)

x y

2) No singularities

 


 



Example 7: How Do We Know When We 

Have a Gradient Field? 

Try again to classify these vector fields as "gradient 

fields", or "not gradient fields":

 2 2xy ,x y

 x yye ,xe

   x 1, y 4

Vector Field Gradient? Why?
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Example 7: How Do We Know When We 

Have a Gradient Field? 

   22Find a function f(x,y) that xyyiel 2ds f(x,y ,x= y) 1 .











2 2We want an f(x,y) such that 
f

xy  a
f

x+2
x

n  y
y

d 1 :
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
       

 
2 2

2 2 x yf
xy 2 f(x,y) (If , xy 2)dx 2x (y)

x 2
then .

2Hence, .
f

x y '(y)
y


  




  


 


  



22 f
xIf and , then 

f
x y '(y)  '(y)y 1

y
1

y
.

2 2x y
(y) f(x,ySo ) x y cy 2

2
c      



Example 7: How Do We Know When We Have 

a Gradient Field? (ALTERNATE SOLUTION) 

   22Find a function f(x,y) that xyyiel 2ds f(x,y ,x= y) 1 .











2 2We want an f(x,y) such that 
f

xy  a
f

x+2
x

n  y
y

d 1 :
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
       

 
2 2

2 2 x yf
x y 1 f(x,y) (xIf , y 1) dy y (x)

y
then

2
.


  



2f
xHence, y '(x)

x
.











  22If

f
 xy +2and , then

f
xy '(x) ' 

x
(x)

x
2.

    
2 2x y

(x) f(x,2 y) ySo x c 2x c
2



Example 8: The Net Flow of a Gradient Field 

Along an Open Curve (Path Independence) 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)

Let's look at the surface, the gradient field, and a contour plot:
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Example 8: The Net Flow of a Gradient Field 

Along an Open Curve (Path Independence) 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)

 2 31

C

Let's compute m(x,y)dx n(x C,y)dy for , , and CC :

 
      
 

2

1 1 1

t
C : (x (t),y (t)) t, t 1 2 t 0

2




0

2

1 1 11
x '(t),yField( '(t)) ( )dtx (t),y (t)  0.597




0

2

1 1
df( )

dt 0.597 (
x (t),y (t

Chain R
d

)
ule)

t

Our change in height from the starting point

to end point is up 0.597 units.
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Example 8: The Net Flow of a Gradient Field 

Along an Open Curve (Path Independence) 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)

 2

C

What might you expect m(x,y)dx n(x,y)dy for to eqC ual?



 2

2

2

/

2

5 4

0

2
x '(t),y '(t)Field( ) ( )x (t t) y d, (t)  0.597




25 /4

0

2 2
df( )

dt 0.597 (
x (t),y

Chain Rule)
dt

(t)

Our change in height from the starting point

to end point is up 0.597 units.

  
      

  
2 2 2

16tcos(t) 24tsin(t) 25
C : (x (t),y (t)) 2, 2 0 t

425 2 25 2
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Example 8: The Net Flow of a Gradient Field 

Along an Open Curve (Path Independence) 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)

Why did that happen? Can we generalize this phenomenon?
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Path Independence: The Net Flow of a 

Gradient Field Along an Open Curve  

 

2

1
Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let  and

be different curves that share the same starting and ending pC

C

oint:

A gradient field is said to be 

path independent. The net flow 

of a gradient field along any 

two curves connecting the same

two points is the same...

   
21

CC

m(x,y)dx n(x,y)dy m(x,y)dx n(x,y)dy
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Example 8: The Net Flow of a Gradient 

Field Along an Open Curve 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)


C

So what is the simplest path from (-2,2) to (0,-1) so

we can find m(x,y)dx n(x,y)dy??

Hint: What's the most direct

path between two points??
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Example 8: The Net Flow of a Gradient 

Field Along an Open Curve 




 

2 2x y
Start with a familiar surface f(

2xsin(x) 3ycos y)

e

(
x,y)

3
That's right! Let be a line connecting (-2,2) and C (0,-1):

     
3 3 3

C : (x (t),y (t)) ( 2,2) t(2, 3) 0 t 1

 3

1

0

3 3 3
Field( ) (x (t),y (t) x '(t),y ))dt'(t

1

0

3 3
d xf( )

dt 0.597 (Chain Rule)
(t), y (t

t

)

d
 

Our change in height from the starting

point to end point is up 0.597 units.
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Using "path independence" in this way is 

called "picking a replacement curve."
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Example 8: The Net Flow of a Gradient 

Field Along an Open Curve 






 

  2 2x y

C

Find m(x,y)dx n(x,y)dy for f(x,y)
e

where C connects ( 2,2) and (0, 1). What is an ev

2xsin(x) 3

en easier

y

 

cos(y)

way??


b

a

Field(x(t),y(t)) (x'(t),y'(t))dt

 
b

a

df(x(t),y(t))
dt

dt

 f(x(b),y(b)) f(x(a), y(a))

 0.597


2 2 1 1

If you know the equation for the surface, then your easiest

bet is to just find your change in height! f(x ,y ) f(x ,y )!!

   f(0, 1) f( 2,2)



Created by Christopher Grattoni. All rights reserved. 

The Fundamental Theorem of Line 

Integrals 


b

a

Field(x(t),y(t)) (x'(t),y'(t))dt  
b

a

df(x(t),y(t))
dt

dt

 f(x(b),y(b)) f(x(a), y(a))

The net flow of a gradient field

along a closed curve is just your

change in height:

2 2 1 1
f(x ,y ) f(x ,y )

Fundamental Theorem of Line Integrals



Example 9: The Net Flow of a Vector Field 

Along an Open Curve 

    Start with a vector field m(x,y),n(x,y y,2x) y .

a) Is our vector field a gradient field?






m
1

y






n
2

x

Not a gradient field!
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Example 9: The Net Flow of a Vector Field 

Along an Open Curve 

    Start with a vector field m(x,y),n(x,y y,2x) y .

 1 2

C

b) Calculate m(x,y)dx n C(x,y)dy for an Cd :

     
1 1 1

C : (x (t),y (t)) ( 2,2) t(2, 3) 0 t 1

 1

1

0

1 1 1
Field( ) (x (t),y (t) x '(t),y ))dt'(t

 
      
 

2

2 2 2

t
C : (x (t),y (t)) t, t 1 2 t 0

2

  
1

0

9t 10dt


11

2

1

The net flow of the vector field along curve

 is in the direction of parameterizaC tion.
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Example 9: The Net Flow of a Vector Field 

Along an Open Curve 

    Start with a vector field m(x,y),n(x,y y,2x) y .

 1 2

C

b) Calculate m(x,y)dx n C(x,y)dy for an Cd :

     
1 1 1

C : (x (t),y (t)) ( 2,2) t(2, 3) 0 t 1




0

2

2 2 22
x '(t),yField( '(t)) ( )dtx (t),y (t)

 
      
 

2

2 2 2

t
C : (x (t),y (t)) t, t 1 2 t 0

2



   
0

3 2

2

13 t 3
2t t dt

2 4 2


41

6

2

The net flow of the vector field along curve

 is in the direction of parameterizaC tion.
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Example 9: Only Gradient Fields Are Path 

Independent? 

 a non-gradient vector field Field(x,y)Start with = y,2x y .

 1 2

C

Calculate m(x,y)dx n(x,y)dy for C and C :

     
1 1 1

C : (x (t),y (t)) ( 2,2) t(2, 3) 0 t 1

 
      
 

2

2 2 2

t
C : (x (t),y (t)) t, t 1 2 t 0

2

 1

1

0

1 1 1
Field( ) (x (t),y (t) x '(t),y ))dt'(t   

1

0

9t 10dt 
11

2




0

2

2 2 22
x '(t),yField( '(t)) ( )dtx (t),y (t)



   
0

3 2

2

13 t 3
2t t dt

2 4 2


41

6

No path independence for a non-gradient vector field!!



Be Careful! Is it a Gradient Field? 

 

 

We define a gradient field to be a vector field m(x,y),n(x,y)  such that

there exists a function z f(x,y) such that 

f f
m(x,y),n(x,y) f(x,y) ,

x y



  
    

  
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Gradient fields have the property that there is a surface associated with

them. Sources correspond with minima and sinks correspond with maxima.

 

WARNING :  In order to be

classified as a gradient field,

your vector field must not 

have any points (x,y) where 

m(x,y),n(x,y) is undefined.

If your vector field is undefined

at a point, it can't be called a 

gradient field. It doesn't enjoy 

all of the properties you usually 

get for free with a gradient field.
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Example 11: Is Passing the First Part of 

the Gradient Test Enough? 

3 2 2 3

1 1
Is ,  a gradient field?

x y x y

 
  
 

3 2 3 3

1 m 2
m(x,y) ,  then 

yx y x y


  



2 3 3 3

1 n 2
n(x,y) ,  then 

xx y x y


  



This looks like a gradient field, but technically it is not

because we have singularities at all points such that x 0

or y 0.






