Lesson 7

Integrals for Measuring Flow

= **E(t)** = (x(t), y(t)) = (cos(t), 2sin(t)) + (-1, 1)

Measure the net flow of the vector field along the curve:

Recall that this is like a set of underwater train tracks being buffeted by a swirling, violent current.

We can get a better picture of what is going on by just plotting the field vectors whose tails are on the curve:

= **E(t)** = (x(t), y(t)) = (cos(t), 2sin(t)) + (-1, 1)

Can we tell if it is clockwise or

How do we get a better picture of what is going on based on what we learned last chapter?

= x) be a vector field acting on the curv
= $(x(t), y(t)) = (cos(t), 2sin(t)) + (-1, 1)$ $E(t) = (x(t),y(t)) = (cos(t),2sin(t)) + (-1,1)$

Measure the net flow of the vector field along the curve:

Yes, at each point, we can plot the push of the field vector in the direction of the tangent vector to the curve:

 \bullet \bullet **Field(x(t), y(t))** \bullet **(x'(t), y'(t))**
(x'(t), y'(t)) **(a)** (x(t), y(t)) • (x'(t), y'(t)
(x'(t), y'(t)) • (x'(t), y'(t))

It looks like it is a net counterclockwise flow of the vector field along the curve, but are we 100% positive about this?

= **E(t)** = (x(t), y(t)) = (cos(t), 2sin(t)) + (-1, 1)

Measure the net flow of the vector field along the curve:

to Field(x(t), y(t)) • (x'(t), y'(t)) around
the curve since this records when the **Our real measure is really what happens to Field(x(t),y(t)) (x'(t),y'(t)) around field helps or hurts our movement in the direction of the parameterization, and by how much:**

Integrate it :

 2 \bullet **∫ Field(x(t), y(t)) • (x '(t), y '(t)) dt 0**

= **Example 1)** Let Field(x, y) = (y, 2x) be a vector field acting on the curv
 $E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (-1, 1)$

Measure the net flow of the vector field along the curve:

 π ^{2π}
∫ Field(x(t), y(t)) • (x '(t), y '(t)) dt **2 0** π $=\int^{2\pi} (2\sin(t) + 1, 2\cos(t) - 2) \cdot (-\sin(t))$ **2 0** $(2\sin(t) + 1, 2\cos(t) - 2) \cdot (-\sin(t), 2\cos(t)) \, dt$ π **2** = ∫ −2sin²(t) − sin(t) + 4 cos²(t) − 4 cos(t) dt **2 0** $= 2\pi$

Positive! The net flow of the vector field along the curve is in the direction of the parameterization (counterclockwise).

The Line Integral: Formalizing What We Just Did

So far, we only integrated because we had a vague notion that integrating this expression will accumulate all of the little pushes with or against the curve and tell us whether we have a net push in the clockwise or counterclockwise direction. We can do better:

$f(x)$	dx	$F(x, y)$	dc
Function of a single variable Interval [a,b] along the x-axis integrate with respect to left-right (x) movement: dx	curve in space, C, with parameterization c		
Integrate with respect to left-right (x) movement: dx	o Integrate with respect to movement along the parameterization of the curve: dc o $F(x, y)$ "dot product" dc		

 \circ

 \circ

 \overline{O}

 \circ

The Line Integral: Formalizing What We Just Did

 $\big(\mathsf{m}(\mathsf{x},\mathsf{y}),\mathsf{n}(\mathsf{x},\mathsf{y})\big)$ Let C be a curve parameterized by $c(t)=(x(t),y(t))$ for $a \le t \le b$, Let C be a curve parameterized by c(t)=(x(t),y(t)) for a \leq t \leq b,
and let F(x,y) be a vector field, F(x,y)=Field(x,y)=(m(x, y),n(x, y)).

$$
\int_{C} F(x, y) \cdot dc = \int_{a}^{b} F(x(t), y(t)) \cdot \frac{dc}{dt} dt
$$
\n
$$
= \int_{a}^{b} F(x(t), y(t)) \cdot c'(t) dt
$$
\n
$$
= \int_{a}^{b} Field(x(t), y(t)) \cdot (x'(t), y'(t)) dt
$$

This is called the line (path) integral of the vector field along the curve.

Other Ways Of Writing The Line Integral

 $= (m(x,y),n(x,y))$ nd let C be
 \leq t \leq b. **LETTE Field(x, y) = (m(x, y), n(x, y)) and let C be a curve** Let Field(x, y) = $(m(x, y), n(x, y))$ and let C
parameterized by (x(t),y(t)) for a \leq t \leq b.

$$
\int_{a}^{b} Field(x(t), y(t)) \bullet (x'(t), y'(t)) dt
$$

Other Ways Of Writing The Line
\nIntegral
\nLet Field(x,y) = (m(x,y),n(x,y)) and let C be a curve
\nparameterized by (x(t),y(t)) for a
$$
\le t \le b
$$
.
\n
\n
$$
\int_{a}^{b} Field(x(t), y(t)) \cdot (x'(t), y'(t)) dt
$$
\n
$$
= \int_{a}^{b} (m(x(t), y(t)), n(x(t), y(t))) \cdot (x'(t), y'(t)) dt
$$
\n
$$
= \int_{a}^{b} (m(x(t), y(t))x'(t) + n(x(t), y(t))y'(t)) dt
$$
\n
$$
= \int_{a}^{b} m(x(t), y(t)) \frac{dx}{dt} dt + n(x(t), y(t)) \frac{dy}{dt} dt
$$
\n
$$
= \int_{a}^{b} m(x,y) dx + n(x,y) dy
$$

Put it All Together: Measuring the Net Flow of a Vector Field ALONG a Curve

The physics interpretation of "flow along" is "work."

relative ease.

Put it All Together: Measuring the Net Flow of a Vector Field ALONG a Curve

Let C be a closed curve with a COUNTERCLOCKWISE parameterization :

If \oint_C m(x, y)dx + n(x, y)dy > 0, then **the net flow of the vector field along the curve is counterclockwise.**

If $\oint_{\mathsf{C}} \mathsf{m}(\mathsf{x},\mathsf{y}) \mathsf{d} \mathsf{x} + \mathsf{n}(\mathsf{x},\mathsf{y}) \mathsf{d} \mathsf{y} < 0$, then

the net flow of the vector field along

the curve is clockwise.

$$
\oint_{\mathsf{C}} m(x,y)dx + n(x,y)dy \text{ can equal 0.}
$$

Example 2: Measuring the Net Flow of a Vector Field Along Another Closed Curve

 \oint_C m(x, y)dx +

Component of Field

Vectors in the

Direction of the

Tangent Vectors

Example 2: Measuring the Net Flow of a Vector Field Along Another Closed Curve

Vector Field (x,y) = (3y,-x²) be a vector field acting on the ellipse
$$
\left(\frac{x-1}{2}\right)^2 + y^2 = 1
$$
. Compute $\oint_C m(x,y)dx + n(x,y)dy$:

\n**Field (x,y) = (m(x,y),n(x,y))**

\n**Field (x,y) = (m(x,y),n(x,y))**

\n**Find (x,y) = (3y,-x²)**

\n**Find (x,y) = (3y,-x²)**

\n**Find (x,y) = (3y,-x²)**

\n**Find (x,y) = (2cos(t),sin(t)) + (1,0)**

against the direction of the parameterization (clockwise). $\mathsf{a}=-10\pi$
Negative! The net flow of the vector field along the curve
.(against the direction of the parameterization (clockwise

Let Field(x, y) = (y, x + y) be a vector field acting on the cu
E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (2, 0)
Measure the net flow of the vector field across the curve:

We can get a better picture of what is going on by just plotting the field vectors whose tails are on the curve:

E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (2, 0)

Measure the net flow of the vector field across the curve:

Better, but we can improve our picture further:

E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (2, 0)

At each point, we can plot the push of the field vector in the direction of Measure the net flow of the vector field across the curve:
At each point, we can plot the p
of the field vector in the direction
the normal vector to the curve:

> • (V (T) , — $-x'(t)) \bullet (y'(t), -x'(t))$ **Field(x(t), y(t)) • (y '(t), -x '(t))**
(y '(t), -x '(t)) **(y'(t), x'(t)) (y'(t), x'(t))**

It looks like it is a net flow of the vector field across the curve from inside to outside, but we want to verify this numerically:

Let Field(x, y) = (y, x + y) be a vector field acting on the cu
E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (2, 0)
Measure the net flow of the vector field across the curve:

to Field(x(t), y(t)) • (y'(t), –x'(t)) around **Our real measure is really what happens the curve since this records when the field pushes us left or right relative to our direction of travel, and by how much:**

```
Integrate it :
```

```

2
∫ Field(x(t), y(t)) • (y'(t), -x'(t)) dt
0
```
Let Field(x, y) = (y, x + y) be a vector field acting on the cu
 $E(t) = (x(t), y(t)) = (cos(t), 2sin(t)) + (2, 0)$
Measure the flow of the vector field across the curve:

$$
\int_{0}^{2\pi} \text{Field}(x(t), y(t)) \cdot (y'(t), -x'(t)) dt
$$
\n
$$
= \int_{0}^{2\pi} (2\sin(t), \cos(t) + 2\sin(t) + 2) \cdot (2\cos(t), \sin(t)) dt
$$
\n
$$
= \int_{0}^{2\pi} 2\sin(t) + 5\cos(t)\sin(t) + 2\sin^2(t) dt
$$
\n
$$
= 2\pi
$$
\nPositive! The net flow of the vector field across the curve is

parameterization, this is from inside to outside. $=$ 2 π
Positive! The net flow of the vector field across the curve is
with the direction of the normal vectors. For a counterclockwise

Put it All Together: Measuring the Net Flow of a Vector Field ACROSS a Curve

curve is from "inside to outside" or from "outside to inside." the open curve is from above to below the curve or from below to above.

The physics interpretation of "flow across" is "flux."

Put it All Together: Measuring the Net Flow of a Vector Field ACROSS a Curve Put it All Together: Measuring the Net Flow
of a Vector Field ACROSS a Curve
c be a closed curve with a COUNTERCLOCKWISE parameterization:
If $\oint_C -n(x, y)dx + m(x, y)dy > 0$, then
the net flow (flux) of the vector field
If

Let C be a closed curve with a COUNTERCLOCKWISE parameterization :

Put it All Together: Measuring the Net
of a Vector Field ACROSS a Curv
it C be a closed curve with a COUNTERCLOCKWISE parame
If
$$
\oint_C -n(x,y)dx + m(x,y)dy > 0
$$
, then
the net flow (flux) of the vector field
across the curve is from inside to outside.
If $\oint_C -n(x,y)dx + m(x,y)dy < 0$, then
the net flow (flux) of the vector field
across the curve is from outside to inside.
 $\oint_C -n(x,y)dx + m(x,y)dy$ can equal 0.
 $\oint_C -n(x,y)dx + m(x,y)dy$ can equal 0.

If
$$
\oint_C -n(x, y)dx + m(x, y)dy < 0
$$
, then the net flow (flux) of the vector field across the curve is from outside to inside.

$$
\oint_C -n(x,y)dx + m(x,y)dy
$$
 can equal 0.

Example 4: Measuring the Net Flow of a Vector Field Across Another Closed Curve
Let Field(x,y) = $(-x - cos(y), -y + sin(x))$ be a vector field acting

Let Field(x, y) = (-x - cos(y), -y + sin(x)) be a vector field ac
on the circle $x^2 + y^2 = 1$. Compute $\oint_C -n(x,y)dx + m(x,y)dy$: Let Field(x, y) = $(-x - cos(y), -y + sin(x))$ be a vector field acting **Component of Field Vectors in the**

Direction of the

Normal Vectors

Created by Christopher Grattoni. All rights reserved.

Example 4: Measuring the Net Flow of a Vector Field Across Another Closed Curve
Let Field(x,y) = (-x - cos(y), -y + sin(x)) be a vector field acting on

 $\mathsf{Field}(x,y) = (m(x,y),n(x,y))$ = (m(x, y), n(x, y) *)*
= (-x - cos(y), -y + sin(x)) $) = (-x - cos(y), -y + sin(x))$ be a vector fi
+ y² = 1. Compute $\oint_C -n(x, y)dx + m(x, y)dx$ **y**) = (
 $x^2 + y^2$ Let Field(x, y) = (-x - cos(y), -y + sin(x)) be a vector field
the circle x² + y² = 1. Compute $\oint_C -n(x,y)dx + m(x,y)dy$: **c(t) = (x(t), y(t)) (cos(t),sin(t))** Sounterclockwise

 $\oint_C -n(x,y)dx + m$ $n(x,y)dx + m(x,y)dy = \int_{0}^{b} (-n(x(t),y(t))x'(t) + m(x(t),y(t))y'(t))dy$ **b a n(x(t),y(t))x'(t) m(x(t),y(t))y'(t) dt** $=-2\pi$

across the curve is from outside to inside. $=-2\pi$
Negative! The net flow of the vector field **across the curve is from outside to inside.**

Example 5: The Net Flow of a Gradient Field Along a Closed Curve **y)**

 $($) + 3²
 $e^{x^2 + y^2}$

 $\ddot{}$

 $\frac{2x \sin x}{1} = -\frac{2x \sin x}{1}$ **Start with a surface** $f(x,y) =$

gradient field, ∇ **f, associated Now let's take a look at the with the surface:**

Example 5: The Net Flow of a Gradient Field Along a Closed Curve

How plot
$$
\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$
 for $f(x,y) = -\frac{2x \sin(x) + 3y \cos(y)}{e^{x^2 + y^2}}$.

\nThus, $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f$

Consider an elliptical path $(x(t),y(t))$ on the surface for $0 \le t \le 2\pi$:

0

$$
\left(0.9\cos\left(t+\frac{3\pi}{2}\right),1.1\sin\left(t+\frac{3\pi}{2}\right)\right)+\left(0,0.1\right)
$$

Compute the net flow of the gradient
field along the curve:

 $\mathbf{0.9\,cos\Big[\,t+\frac{3\pi}{2}\,\Big]}$, 1.1 sin $\Big[\,t+\frac{3\pi}{2}\,\Big]\,\Big]_+(0,0.1)$

 Field(x(t),y(t)) (x'(t),y'(t))dt \int

$$
= \int_{0}^{2\pi} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \bullet (x'(t), y'(t)) dt
$$

 π $=$ \int **2 0 df(x(t),y(t)) dt (Chain Rule) dt**

** Let's interpret this using the surface...

Example 5: The Net Flow of a Gradient Field Along a Closed Curve

$$
\int_{0}^{2\pi} \text{Field}(x(t), y(t)) \bullet (x'(t), y'(t)) dt = \int_{0}^{2\pi} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \bullet (x'(t), y'(t)) dt
$$

The Net Flow of a Gradient
\nAlong a Closed Curve
\n), y'(t)dt =
$$
\int_{0}^{2\pi} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot (x'(t), y'(t)) dt
$$

\n $= \int_{0}^{2\pi} \frac{df(x(t), y(t))}{dt} dt$
\n $= f(x(2\pi), y(2\pi)) - f(x(0), y(0))$
\n $= 0$
\nThis represents the net change in height
\n(altitude) on the curve from 0 to 2π
\nalong the path (x(t), y(t)).
\nWhat should this be for our
\nclosed curve?
\nYes! 0!! The net flow of a gradient field
\nalong a closed curve is 0.

(altitude) on the curve from 0 to 2 π **This represents the net change in height**

along the path (x(t),y(t)).

What should this be for our

closed curve?

Yes! 0!! The net flow of a gradient field

along a closed curve is 0.

Summary: The Net Flow of a Gradient Field Along a Closed Curve

 $\big(\mathsf{m}(\mathsf{x},\mathsf{y}),\mathsf{n}(\mathsf{x},\mathsf{y})\big)$ **Let Field Along a Closed Curve**
Let Field(x,y)= $(m(x,y),n(x,y))$ be a gradient field, and let C be a Let Field(x,y)= $\big(m(x,y),n(x,y)\big)$ be a gradient field, and let C be a
simple closed curve with a parameterization (x(t),y(t)) for a \leq t \leq b.

simple closed curve with a parameterization $(x(t),y(t))$ for $a \le t \le b$.

1)
$$
\int_{a}^{b} \text{Field}(x(t), y(t)) \cdot (x'(t), y'(t)) dt = 0
$$

2)
$$
\oint_C m(x,y)dx + n(x,y)dy = 0
$$

3) The net flow of a gradient field along a simple closed curve is 0.

Why is this intuitively true?

How do we know a closed curve can't be a trajectory

Gratting by Christopher Grattage **of a gradient field? Is the net flow of a gradient field ACROSS a closed curve 0?**

Summary: The Net Flow of a Gradient Field Along a Closed Curve

 $\big(\mathsf{m}(\mathsf{x},\mathsf{y}),\mathsf{n}(\mathsf{x},\mathsf{y})\big)$ **Let Field Along a Closed Curve**
Let Field(x,y)= $(m(x,y),n(x,y))$ be a gradient field, and let C be a Let Field(x,y)= $\big(m(x,y),n(x,y)\big)$ be a gradient field, and let C be a
simple closed curve with a parameterization (x(t),y(t)) for a \leq t \leq b.

simple closed curve with a parameterization $(x(t),y(t))$ for $a \le t \le b$.

1)
$$
\int_{a}^{b} Field(x(t), y(t)) \cdot (x'(t), y'(t)) dt = 0
$$

2)
$$
\oint_C m(x,y)dx + n(x,y)dy = 0
$$

3) The net flow of a gradient field along a simple closed curve is 0.

For this reason, gradient fields are called conservative vector fields. We also say that gradient fields are irrotational.

Example 6: Is the Net Flow of ANY Vector

Field Along a Closed Curve Zero?	
Let Field(x,y) = (ye ^x , xe ^y) and keep the same curve, so θ <i>Caatterolochwise</i> \n <tr>\n<td>$(0.9 \cos\left(t + \frac{3\pi}{2}\right), 1.1 \sin\left(t + \frac{3\pi}{2}\right)) + (0.0.1)$</td>\n</tr> \n	$(0.9 \cos\left(t + \frac{3\pi}{2}\right), 1.1 \sin\left(t + \frac{3\pi}{2}\right)) + (0.0.1)$
$(0.9 \cos\left(t + \frac{3\pi}{2}\right), 1.1 \sin\left(t + \frac{3\pi}{2}\right)) + (0.0.1)$	

 Field(x(t),y(t)) (x'(t),y'(t))dt 0.548155 \int

So the net flow of a general vector field along a closed curve need not equal 0.

The net flow of the vector field along the curve is counterclockwise.

Example 7: How Do We Know When We Have a Gradient Field? **The last two examples clearly show the advantages to knowing whether**

Here are a few vector fields. Try to classify them as "gradient fields", or "not gradient fields": The last two examples clearly show the advantages to knowing wheth our vector field is a gradient field or not. This motivates us to ask the **question, "Given a vector field, how do we know if it is a gradient field?"**

$\left(xy^{2}$, $x^{2}y\right)$ **k** ye^x , xe^y $\Big)$ $(x + 1, -y + 4)$ **Vector Field Gradient? Why?**

The Gradient Test

A vector field, Field(x,y) m(x,y),n(x,y) , is a gradient A vector field, Field(x,y) = (m(x,y),n(x,y)), is a gradi
field if and only if it is defined at all points (x,y) and:

$$
\frac{\partial n(x,y)}{\partial x} = \frac{\partial m(x,y)}{\partial y}
$$

- **Proof of "if" Part of Theorem:**
- $\left(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}\right)$ Proof of "if" Part of Theorem:
If Field(x,y) is a gradient field, then Field(x,y)=(f_x,f_y). If Field(x,y
So f_{xy} = f_{yx}.

So
$$
f_{xy} = f_{yx}
$$
.

Gradient Test (Summary):

The Gradient Test : $\frac{m}{\lambda} = \frac{dm}{\lambda}$ **x y 2) No singularities** $\partial \mathsf{n}$ ∂ ∂x ∂

Example 7: How Do We Know When We Have a Gradient Field?

- **Try again to classify these vector fields as "gradient fields", or "not gradient fields":**
- **Vector Field Gradient? Why?**

$$
(xy^2, x^2y)
$$

$$
(\mathsf{ye}^{\mathsf{x}}, \mathsf{xe}^{\mathsf{y}})
$$

$(x + 1, -y + 4)$

Example 7: How Do We Know When We Have a Gradient Field?

 $\nabla f(x,y) = (xy^2 + 2, x^2y - 1)$ Find a function f(x,y) that yields $\nabla f(x,y) = (xy^2 + 2, x^2y - 1)$.

Find a function f(x,y) that yields
$$
\nabla f(x,y) = (xy^2 + 2, x^2y - 1)
$$

We want an f(x,y) such that $\frac{\partial f}{\partial x} = xy^2 + 2$ and $\frac{\partial f}{\partial y} = x^2y - 1$:

We want an f(x,y) such that
$$
\frac{\partial f}{\partial x} = xy^2 + 2
$$
 and $\frac{\partial f}{\partial y} = x^2y - 1$:
If $\frac{\partial f}{\partial x} = xy^2 + 2$, then $f(x, y) = \int (xy^2 + 2)dx = \frac{x^2y^2}{2} + 2x + \phi(y)$.

Hence,
$$
\frac{\partial f}{\partial y} = x^2y + \phi'(y)
$$
.

$$
\frac{\partial y}{\partial y} = x^2 y + \phi'(y) \text{ and } \frac{\partial f}{\partial y} = x^2 y - 1, \text{ then } \phi'(y) = -1.
$$

2 $\phi(y) = -y + c \Rightarrow f(x, y) = \frac{x^2y^2}{2} + 2x - y + c$ **2** $\phi(y) = -y + c \implies f(x, y) = \frac{y - y}{2} + 2x - y + c$

Example 7: How Do We Know When We Have a Gradient Field? (ALTERNATE SOLUTION)

 $\nabla f(x,y) = (xy^2 + 2, x^2y - 1)$ **EXEC** <u>Resetence of the field of that yields $\nabla f(x,y) = (xy^2 + 2, x^2y - 1)$.
Find a function $f(x,y)$ that yields $\nabla f(x,y) = (xy^2 + 2, x^2y - 1)$.</u>

Find a function f(x,y) that yields
$$
\nabla f(x,y) = (xy^2 + 2, x^2y - 1)
$$

We want an f(x,y) such that $\frac{\partial f}{\partial x} = xy^2 + 2$ and $\frac{\partial f}{\partial y} = x^2y - 1$:
If $\frac{\partial f}{\partial y} = x^2y - 1$, then $f(x, y) = \int (x^2y - 1) dy = \frac{x^2y^2}{2} - y + \psi(x)$.

If
$$
\frac{\partial I}{\partial y} = x^2y - 1
$$
, then $f(x, y) = \int (x^2y - 1) dy = \frac{xy}{2} - y + \psi(x)$.

Hence,
$$
\frac{\partial f}{\partial x} = xy^2 + \psi'(x)
$$
.

a $\frac{\partial}{\partial x}$ = ╋ **a** Ξ **a** If $\frac{\partial f}{\partial x} = xy^2 + \psi'(x)$ and $\frac{\partial f}{\partial y} = xy^2 + 2$, then ψ'' **x (x) x 2.**

20 $\psi(x) = 2x + c \implies f(x, y) = \frac{x^2y^2}{2} - y + 2x + c$ **2**

- e^{x^2+} $\ddot{}$ $=-\frac{2x\sin(x)+3y\cos(x)}{e^{x^2+y^2}}$ **Start with a familiar surface f(x,y) =** $-\frac{2x\sin(x) + 3y\cos(y)}{2x^2+y^2}$ **Start with a familiar surface** $f(x,y) = -$
- **Let's look at the surface, the gradient field, and a contour plot:**

 $\ddot{}$ $\ddot{}$ **2 2 x y Start with a familiar surface f(2xsin(x) 3ycos y) e (Start with a familiar surface** $f(x,y) = -\frac{2x \sin((x) + 3y \cos(y))}{e^{x^2 + y^2}}$ **
Let's compute** $\int_{0}^{x^2+y^2} f(x,y)dx + n(x,y)dy$ **for** C_1 **,** C_2 **, and** C_3 **:**

 \int_{0}^{1} **2** \int_{0}^{1} **C** $\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{2} - 1\right)$ - 2 **2 t C₁** : (**x**₁(**t**), **y**₁(**t**)) = $\left(t, t^2 + \frac{t}{2} - 1\right)$ - 2 ≤ **t** ≤ **0**

$$
C_1 : (x_1(t), y_1(t)) = \left(t, t^2 + \frac{t}{2} - 1\right) \quad -2 \le t \le 0
$$

 \bullet \int **Field(x**₁(t), **y**₁(t)) • (**x**₁ '(t), **y**₁ '(t))dt \approx 0.597 **0 2**

 \approx $\int \frac{d\mathbf{u}(\mathbf{x}_1(\mathbf{u}), \mathbf{y}_1(\mathbf{u}))}{\mathbf{d}\mathbf{t}} \, \mathrm{d}\mathbf{t}$ **0 2** $\frac{df(x_1(t), y_1(t))}{dt}$ dt ≈ 0.597 (Chain R **d) ule) t**

Our change in height from the starting point to end point is up 0.597 units.

Created by Christopher Grattoni. All rights reserved.

2.

- e^{x^2+} $\ddot{}$ $=-\frac{2x\sin(x)+3y\cos(x)}{e^{x^2+y^2}}$ **Start with a familiar surface f(x,y) =** $-\frac{2x\sin(x) + 3y\cos(y)}{2x^2+y^2}$ **Start with a familiar surface** $f(x,y) = -$
- **Why did that happen? Can we generalize this phenomenon?**

Path Independence: The Net Flow of a

Gradient Field Along an Open Curve
Let Field(x,y)=(m(x,y),n(x,y)) be a gradient field, and let C₁ and $\big($ m(x, y), n(x, y) $\big)$ be a gradient field, and let $\textsf{C}_\textsf{1}^{\phantom i}$ **2 C be different curves that share the same starting and ending p oint:**

$$
\int_{C_1} m(x,y)dx + n(x,y)dy = \int_{C_2} m(x,y)dx + n(x,y)dy
$$

A gradient field is said to be path independent. The net flow of a gradient field along any two curves connecting the same two points is the same...

Example 8: The Net Flow of a Gradient Field Along an Open Curve

 e^{x^2+} $\ddot{}$ $=-\frac{2x\sin(x)+3y\cos(x)}{e^{x^2+y^2}}$ **Start with a familiar surface** $f(x,y) = -\frac{2x\sin(x) + 3y\cos(y)}{2x^2+y^2}$ **Start with a familiar surface** $f(x,y) =$

So what is the simplest path from (−2)
we can find \int m(x,y)dx + n(x,y)dy?? **C So what is the simplest path from (-2,2) to (0,-1) so Hint: What's the most direct path between two points??**

Example 8: The Net Flow of a Gradient Field Along an Open Curve

- $\ddot{}$ $\ddot{}$ **2 2 x y Start with a familiar surface f(2xsin(x) 3ycos y) e (x,y)**
- **3 That's right! Let be a line connecting (C -2,2) and (0,-1):**
	- C_3 : $(x_3(t), y_3(t)) = (-2, 2) + t(2, -3)$ $0 \le t \le 1$ **³ 3 3 3 Field() (x (t),y (t) x '(t),y) '(t)dt 1 0** $\int_0^1 df(x_3(t), y_3(t))$ degrees the $\int_0^1 f(x) dx$ **0** dt ≈ 0.597 (Chain Rule) (t) , $y_3(t)$ $\qquad \qquad$ \qquad \qquad **t)** $=\int_{0}^{\frac{\ln(x_3(t), y_3(t))}{\ln x_3(t)}} dt \approx 0.597$ (Chain Ru **Our change in height from the starting point to end point is up 0.597 units. Using "path independence" in this way is called "picking a replacement curve."**

Example 8: The Net Flow of a Gradient Field Along an Open Curve

Find
$$
\int m(x, y) dx + n(x, y) dy
$$
 for $f(x, y) = -\frac{2x \sin(x) + 3y \cos(y)}{e^{x^2 + y^2}}$ where C connects (-2, 2) and (0, -1). What is an even easier w

en easier way??

If you know the equation for the surface, then your easiest

The Fundamental Theorem of Line Integrals

$$
\int_{a}^{b} Field(x(t), y(t)) \bullet (x'(t), y'(t))dt = \int_{a}^{b} \frac{df(x(t), y(t))}{dt} dt
$$

$$
= f(x(b), y(b)) - f(x(a), y(a))
$$

The net flow of a gradient field along a closed curve is just your change in height:

$$
f(x_2, y_2) - f(x_1, y_1)
$$

Fundamental Theorem of Line Integrals

Example 9: The Net Flow of a Vector Field Along an Open Curve

Start with a vector field $(m(x,y),n(x,y)) = (y,2x + y)$ **.**

a) Is our vector field a gradient field?

Example 9: The Net Flow of a Vector Field Along an Open Curve

1 Start with a vector field $(m(x,y),n(x,y)) = (y,2x+y).$
b) Calculate $\int_{a}^{b} m(x,y)dx + n(x,y)dy$ **for** C_1 **and** C_2 **: Start with a vector field** $(m(x,y),n(x,y)) = (y,2x + y).$ **C** C_1 : (x₁(t), y₁(t)) = (-2, 2) + t(2, -3) 0 \le t \le 1 $\mathbf{1} \cdot (\mathbf{x}_2(\mathbf{t}), \mathbf{y}_2(\mathbf{t})) = \left(\mathbf{t}, \mathbf{t}^2 + \frac{\mathbf{t}}{2} - \mathbf{1}\right)$
Field(x₁(t), y₁(t)) • (x₁'(t), y₁'(t))dt **t** $=$ $\left(t, t^2 + \frac{1}{2} - 1\right)$ $-2 \le t \le$ C_2 : (**x**₂(**t**), **y**₂(**t**)) = | **t**, **t**² + $\frac{1}{2}$ - 1 | $-2 \le t \le 0$ **2 2 2 2 1** \int Field($\mathsf{x}_{_{1}}$ \bullet **0 1 9t + 10dt** = ∫ **0 11** = **2 The net flow of the vector field along curve** $x^2 + 5$

 \mathbf{C}_1 is in the direction of parameterization.

Example 9: The Net Flow of a Vector Field Along an Open Curve

Start with a vector field $(m(x,y),n(x,y)) = (y,2x + y).$ **1** Start with a vector field $(m(x,y),n(x,y)) = (y,2x+y).$
b) Calculate $\int_{a}^{b} m(x,y)dx + n(x,y)dy$ **for** C_1 **and** C_2 **: C** C_1 : (x₁(t), y₁(t)) = (-2, 2) + t(2, -3) 0 \le t \le 1 \bullet \int **0 2 2** $\mathbf{2} \times (\mathbf{x}_2(\mathbf{t}), \mathbf{y}_2(\mathbf{t})) = (\mathbf{t}, \mathbf{t}^2 + \frac{\mathbf{t}}{2} - \mathbf{1})$
 Field(x₂(t), y₂(t)) • (x₂ '(t), y₂ '(t)) dt $=$ $\left(t, t^2 + \frac{1}{2} - 1\right)$ $-2 \le t \le$ **2 2 2 t** C_2 : (**x**₂(**t**), **y**₂(**t**)) = | **t**, **t**² + $\frac{1}{2}$ - 1 | $-2 \le t \le 0$ **2** $=\int 2t^3+\frac{15}{2}t^2-\frac{t}{4}-$ **0 3 2** 2t³ + $\frac{13}{-}$ t 2 - $\frac{t}{-}$ - $\frac{3}{-}$ dt

 $x x x + F K$

 \mathbf{C}_2 is in the direction of parameterization. **The net flow of the vector field along curve**

2 4 2

2

41

6

Ξ

Example 9: Only Gradient Fields Are Path Independent?

Start with a non-gradient vector field Field(x,y)= $(y, 2x + y)$ **.**

Calculate $\int m(x,y)dx + n(x,y)dy$ for C₁ and C₂: **C Start** with a non-gradient vector field Field(x,_y)
Calculate $\int_{C} m(x,y)dx + n(x,y)dy$ for C₁ and C₂:
C₁: (x₁(t), y₁(t)) = (-2, 2) + t(2, -3) 0 ≤ t ≤ 1 $\begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ - 2 $=\left(t, t^2 + \frac{t}{2} - 1\right)$ $-2 \le t \le 0$ \mathbf{y}_2 **:** (**x**₂(**t**), \mathbf{y}_2 (**t**)) = $\left| \mathbf{t}, \mathbf{t}^2 \right|$ **t C₂** : (**x**₂(**t**), **y**₂(**t**)) = $\left(t, t^2 + \frac{t}{2} - 1\right)$ - 2 $\le t \le 0$ **2** \bullet \int Field($\mathsf{x}_{_{1}}$ 1
∫ Field(x₁(t), y₁(t)) • (x₁ '(t), y₁ '(t))dt = ∫-9t + **0 1 0 9t + 10dt** = **11 2** \bullet ∫ **0 2** $\bf{2}$ **z** $\bf{2}$ **z** $\bf{2}$ $\bf{2$ **0 3 2 2** 2t³ + $\frac{13}{-}$ t 2 - $\frac{t}{--}$ - $\frac{3}{-}$ dt $\frac{1}{2}$ c $\frac{2}{4}$ $\frac{2}{2}$ c $\frac{1}{2}$ **41 6**

Created by Christopher Grattoni. All rights reserved. **No path independence for a non-gradient vector field!!**

Be Careful! Is it a Gradient Field?

 $\big(\mathsf{m}(\mathsf{x},\mathsf{y}),\mathsf{n}(\mathsf{x},\mathsf{y})\big)$ **We define a gradient field to be a vector field** $(m(x,y),n(x,y))$ **such that there is define a standient field to be a vector finally of the exists a function** $z = f(x, y)$ **such that** it field to be a vector field $\Big(m(x,y),n(x,y)\Big)$ su
on z = f(x,y) such that
 $m(x,y),n(x,y)\Big) = \nabla f(x,y) = \left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)$ there exists a function $z = f(x, y)$ such that

ion z = f(x, y) such that
\n
$$
(m(x, y), n(x, y)) = \nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

Gradient fields have the property that there is a surface associated with them. Sources correspond with minima and sinks correspond with maxima.

 m(x,y),n(x,y) is undefined. WARNING : In order to be classified as a gradient field, your vector field must not have any points (x,y) where

If your vector field is undefined at a point, it can't be called a gradient field. It doesn't enjoy all of the properties you usually get for free with a gradient field.

Example 11: Is Passing the First Part of the Gradient Test Enough?

Is
$$
\left(\frac{1}{x^3y^2}, \frac{1}{x^2y^3}\right)
$$
 a gradient field?
\n
$$
m(x, y) = \frac{1}{x^3y^2}, \text{ then } \frac{\partial m}{\partial y} = -\frac{2}{x^3y^3}
$$
\n
$$
n(x, y) = \frac{1}{x^2y^3}, \text{ then } \frac{\partial n}{\partial x} = -\frac{2}{x^3y^3}
$$

This looks like a gradient field, but technically it is not because we have singularities at all points such that x = 0 **or y = 0.** Ξ