
Lesson 8 

Sources, Sinks, and Singularities 
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The Gauss-Green Formula 
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Let R be a region in the xy-plane whose boundary is parameterized

by (x(t),y(t)) for . Then the following formula hot :t st ld 

With the proper interpretation, we can use this formula 

to help us compute flow along/across measurements!!

The basic interpretation of Gauss-Green is that it is a 

correspondence between a line integral of a closed 

curve and a double integral of the interior region of 

the closed curve. So for this to work correctly, we just 

need to make sure the vector field has no 

singularities in the interior region!



Measuring the Flow of a Vector Field ALONG 

a Closed Curve 

 



 

 







b

a

b

a

C

Field(x(t),y(t)) (x'(t), y'(t))dt

m(x(t),y(t))x'(t) n(x(t),y(t))y'(t) dt

m(x,y)dx n(x,y)dy

Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ALONG the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

n m
dx dy

x y

R

rotField(x,y) dx dy 

 
 
 

n m
Let rotField(x,y) .

x y
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Summary: The Flow of A Vector Field 

ALONG a Closed Curve: 

R
C

m(x,y)dx n(x,y)dy rotField(x,y) dx dy  

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ALONG the closed 

curve. 

 
   
 

We define the rotation of the vector field as:

n m
rotField(x,y) D[n[x,y],x] D[m[x,y],y]

x y
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Remembering the Formula for the Rotation 

of the Vector Field 

 
 

   
 

n m
rotField(x,y)x y

x y
m n

Created by Christopher Grattoni. All rights reserved. 

You can think of the rotation of your vector field as the 

determinant of a 2x2 matrix with the first row as the 

differential operator and the second row as your 

vector field, Field(x,y) = (m(x,y),n(x,y)): 



Measuring the Flow of a Vector Field 

ACROSS a Closed Curve 

 

 

  

  







b

a

b

a

C

Field(x(t),y(t)) (y'(t), x'(t))dt

n(x(t),y(t))x'(t) m(x(t),y(t))y'(t) dt

n(x,y)dx m(x,y)dy

Let C be a closed curve with a counterclockwise parameterization. Then the net 

flow of the vector field ACROSS the closed curve is measured by: 

Let region R be the interior of C. If the vector field has no singularities in R, then 

we can use Gauss-Green: 

   
  

  

R

m n
dx dy

x y

R

divField(x,y) dx dy 

 
 
 

m n
Let divField(x,y) .

x y
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Summary: The Flow of A Vector Field 

ACROSS a Closed Curve: 

R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy   

Let C be a closed curve parameterized counterclockwise. Let 

Field(x,y) be a vector field with no singularities on the interior 

region R of C. Then: 

This measures the net flow of the vector field ACROSS the closed 

curve. 

 
   
 

We define the divergence of the vector field as:

m n
divField(x,y) D[m[x,y],x] D[n[x,y],y]

x y

Created by Christopher Grattoni. All rights reserved. 



Using Gauss-Green in this way is an amazing 

computational tool provided our closed curves 

do not encapsulate any singularities. So for 

today, we’ll explore this material with no 

singularities.  

 

After this, we’ll see how singularities spice things 

up a bit… 

We Are Saving Singularities for 

Tomorrow 
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Example 1: Avoiding Computation Altogether  

 

 2

Let Field(x,y) 7x 2,y 6  and let C be a closed curve given by

3
C(t) (x(t), y(t)) sin (t),cos(t) sin(t)  for t .

4 4

Is the net flow of the vector field across the curve from inside to outside

or outside to

  

 
     

 inside?

R R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy 8 dx dy 0      
Since divField(x,y) is ALWAYS positive for all (x,y) and there are no 

singularities for any (x,y), this integral is positive for any closed curve. 

 
    
 

m n
divField(x,y) 7 1 8

x y

That is, for ANY closed curve, the net flow of the vector field across

the curve is from inside to outside.



Example 1: Avoiding Computation Altogether  

 

 2

Let Field(x,y) 7x 2,y 6  and let C be a closed curve given by

3
C(t) (x(t), y(t)) sin (t),cos(t) sin(t)  for t .

4 4

Is the net flow of the vector field across the curve from inside to outside

or outside to

  

 
     

 inside?

When divField(x,y)>0, this is a source of new fluid.

Adding up all sources will give you net flow of the

vector field across the curve from inside to outside.

This method was nice because 

it was almost no computation!
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Summary: The Divergence Locates Sources 

and Sinks 

If divField(x,y)>0 for all points in C, then all these points

are sources and the net flow of the vector field across C 

is from inside to outside.

Let C be a closed curve with a counterclockwise parameterization with no 

singularities on the interior of the curve. Then: 

If divField(x,y)<0 for all points in C, then all of these 

points are sinks and the net flow of the vector field 

across C is from outside to inside.

If divField(x,y) 0 for all points in C, then the net flow of

the vector field across C is 0. When this happens for all the

points in your vector field, it is called incompressible.


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Summary: The Rotation Helps You Find 

Clockwise/Counterclockwise Swirl 

If rotField(x,y)>0 for all points in C, then all these points

add counterclockwise swirl and the net flow of the vector 

field along C is counterclockwise.

Let C be a closed curve with a counterclockwise parameterization with no 

singularities on the interior of the curve. Then: 

If rotField(x,y)<0 for all points in C, then all of these points 

add clockwise swirl and the net flow of the vector field 

along C is clockwise.

If rotField(x,y) 0 for all points in C, then these points have

no swirl, and the net flow of the vector field along C is 0. 

When this happens for all points in the vector field, your

vector field is calle



d conservative or irrotational.
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You Try One! 

 

 

5 3

2

Let Field(x,y) y , 2x  and let C be a closed curve given by

C(t) (x(t), y(t)) sin (t) cos(t),sin(t) cos(t)  for t 2 .
2

Is the net flow of the vector field along the curve counterclockwise

or clockwise?

 


      

R
C

m(x,y)dx n(x,y)dy rotField(x,y) dx dy 0   

Since rotField(x,y) is ALWAYS negative for all (x,y) and there are no 

singularities for any (x,y), this integral is negative for any closed curve. 

 
     
 

2 4n m
rotField(x,y) 6x 5y 0

x y

That is, for ANY closed curve, the net flow of the vector field along

the curve is clockwise. Created by Christopher Grattoni. All rights reserved. 



Example 2: Find the Net Flow of a Vector 

Field ACROSS Closed Curve 

 2 2Let Field(x,y) x 2xy, y x  and let C be the rectangle bounded by 

x 2, x 5,y 1,and y 4. Measure the net flow of the vector field

across the curve.

   

     

 
   
 

m n
divField(x,y) 2x 4y

x y

R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy   

 
 

  
4 5

1 2

2x 4y dx dy

 105

Negative. The net flow of the vector field across our closed curve

is from outside to inside.Created by Christopher Grattoni. All rights reserved. 



To compute the net flow 

of water across the 

orange curve, we could 

either measure how 

much water is going past 

the orange curve at each 

point (single integral)… 

OR we could accumulate 

the net effect of all of the 

sources and sinks inside 

the curve (the double 

integral). Either way, we 

get the same 

measurement! Created by Christopher Grattoni. All rights reserved. 

Why Does Gauss-Green Make Intuitive 

Sense When Measuring Flow? 

R
C

n(x,y)dx m(x,y)dy divField(x,y) dx dy   



You can measure how much water is spilling out of an 

overflowing tub either by measuring around the rim of 

the tub (single path integral) or looking at the net effect 

of the faucet/drain (double integral with sources/sinks)…  
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A Variation on This Analogy 



You Try One: Find the Net Flow of a Vector 

Field ALONG a Closed Curve 

 2 2Let Field(x,y) x 2xy, y x  and let C be the rectangle bounded by 

x 2, x 5,y 1,and y 4. Measure the net flow of the vector field 

along the curve.

   

     

 
   
 

n m
rotField(x,y) 1 2x

x y

R
C

m(x,y)dx n(x,y)dy rotField(x,y) dx dy  

 
 

  
4 5

1 2

1 2x dx dy

 140

Positive. The net flow of the vector field along our closed curve

is counterclockwise. Created by Christopher Grattoni. All rights reserved. 
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Updating the Gradient Test: 

Last Chapter :

n m
1)

x y

2) No singularities

 


 

This Chapter :

n m
1) rotField(x,y) 0

x y

2) No singularities

 
  
 

How can we use our

new terminology in

the gradient test?
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Summary: The Flow of a Gradient Field 

Along a Closed Curve 

 
 

Let Field(x,y)= m(x,y),n(x,y)  be a gradient field, and let C be a 

simple closed curve with a parameterization (x(t),y(t)) for a t b.

 
b

a

1) Field(x(t),y(t)) (x'(t),y'(t))dt 0

 C2) m(x,y)dx n(x,y)dy 0

3) The net flow of a gradient field along a simple closed curve is 0.

Why is this intuitively true?
How do we know a closed curve can't be a trajectory 

of a gradient field?
Is the flow of a gradient field ACROSS a closed curve 0?

Note: This is only true where the vector field is defined! If the vector field 

is undefined inside your closed curve, this doesn't work! Today we'll deal 

with singularities since they mess up all of your gradient intuition.



All of our calculations yesterday were for curves 

that did not contain any singularities. Today, we 

will talk about how to cope with vectors fields 

that have singularities! 

Much Ado About Singularities 

Created by Christopher Grattoni. All rights reserved. 
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Example 1: A Flow Along Measurement With 

a Singularity 

2 2 2 2

2 1
sin (t) cos(

y x
Let Field(x,y) ,  and let C be the closed curve described by 

x y x y

1
C(t) ,cos(t)+sin(t)+ for t 2 . Compute the 

2 2

net flow of the vector field along the cu

t)
2

rve.



 
     

  
   


 


 
  
 

n m
rotField(x,y) 0

x y

 The only swirl can come from singularities!

There is a singularity at (0,0).

We can replace our curve with any curve that encapsulates the singularity:

    
2

C (t) sin(t) for 0cos( ) tt 2,

Since rotField(x,y)=0, your field behaves

like a gradient away from singularities.

Note: Had there been no singularities in the curve, how would we 

know that the net flow of the vector field ALONG the curve would be 0?
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Example 1: A Flow Along Measurement With 

a Singularity 

 
 

        
2 2 2 2

y x
Field(x,y) , and C(t) sin(t) focos(t), r 0 t 2

x y x y






C

Because of the singularity, we can't use 

rotField(x,y) dx dy. Instead,  we will need to compute 

m(x,y)dx n(x,y)dy the old-fashioned way:




2

0

Field(x(t),y(t)) (x'(t),y'(t)) dt

 

   
  


2

2 2 2 2
0

sin(t) cos(t)
, ( sin(t),cos(t)) dt

cos (t) sin (t) cos (t) sin (t)



 
2

2 2

0

sin (t) cos (t) dt



 
2

0

1 dt  2
So the net flow of the vector field along the 

curve is counterclockwise!
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Example 2: A Flow Along With Multiple 

Singularities? No Problem! 
  

          
2 2 2 2 2 2 2 2

y y 1 x x
Let Field(x,y) ,  and let C be the 

x y x (y 1) x y x (y 1)

curve pictured below. Compute the flow of the vector field along the curve.

 
  
 

n m
rotField(x,y) 0

x y

 The only swirl can come from singularities!

There are singularities at (0,0) and (0,1).

We can encapsulate the singularities with two little circles and 

sum our results!

    
1

cos(t),C (t) 0.5 sin(t) for 0 t 2

Since rotField(x,y)=0, your field behaves

like a gradient away from singularities.

     
2

C (t) 0.5 sin(t) (0,1) forcos( 0, tt 2)



Example 2: A Flow Along With Multiple 

Singularities? No Problem! 
  

          
2 2 2 2 2 2 2 2

y y 1 x x
Let Field(x,y) ,  and let C be the 

x y x (y 1) x y x (y 1)

curve pictured below. Compute the flow of the vector field along the curve.
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Summary: Flow Along When rotField(x,y)=0 

 
  
 

n m
Let rotField(x,y) 0. Here are some conclusions about the net flow

x y

of the vector field along various closed curves:

 
C

If C doesn't contain any singularities, then m(x,y)dx n(x,y)dy 0.

   
1

C C

1

If C contains a singularity, then m(x,y)dx n(x,y)dy m(x,y)dx n(x,y)dy

for any substitute curve C  containing the same singularity (and no new extras).

1 kC C C

1 k

If C contains k singularities, then 

m(x,y)dx n(x,y)dy m(x,y)dx n(x,y)dy ... m(x,y)dx n(x,y)dy

for little circles, C ,...,C , encapsulating each of these singularities.

       
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Summary: Flow Across When divField(x,y)=0 

 
  
 

m n
Let divField(x,y) 0. Here are some conclusions about the net flow

x y

of the vector field across various closed curves:

  
C

If C doesn't contain any singularities, then n(x,y)dx m(x,y)dy 0.

     
1

C C

1

If C contains a singularity, then n(x,y)dx m(x,y)dy n(x,y)dx m(x,y)dy

for any substitute curve C  containing the same singularity (and no new extras).

1 kC C C

1 k

If C contains k singularities, then 

n(x,y)dx m(x,y)dy n(x,y)dx m(x,y)dy ... n(x,y)dx m(x,y)dy

for little circles, C ,...,C , encapsulating each of these singularities.

          
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Differential Operators from Calc A: 

Created by Christopher Grattoni. All rights reserved. 

d
We can think of  as a differential operator that tell us

dx

"take the derivative with respect to x":

 2xy e

    2xd d
y e

dx dx

 2xdy
2e

dx



Differential Operators from Calc A: 
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2

2

This might help you understand why calculus teachers

d y
say that the second derivative is :

dx

 
 

  
 

d d
y'' y

dx dx

 
 

  
 

2

d
y

dx

 
2

2

d
y

dx


2

2

d y

dx



The Gradient: A New Perspective 
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Let be the differential operator, named "del."

,
x y

  
   

  

f f
f , f ,

x y x y

      
     

      

Let f(x,y) be a function. Then the gradient vector is

defined as follows:



The Gradient: A New Perspective 
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Consider : 
2 2

2 2
, ,

x y x y x y

        
       

        
Now consider f, which we will call the Laplacian : 

2 2

2 2

f f
f

x y

 
   

 
   New symbol for the Laplacian: f f.

 
     

 

2 2

2 2

f f
f f

x y



Created by Christopher Grattoni. All rights reserved. 

Connecting the Laplacian and the 

Divergence of the Gradient Field:  

 
f f

Let z f(x,y) and let f , m(x,y),n(x,y)
x y

  
    

  

2 2

2 2

f f

x y

 
 
 

m n
divField(x,y)

x y

 
 
 

ff

yx

x y

   
   

   
 

 

f  

So the Laplacian, f,

is the divergence of the

gradient field!

 

What if f 0?  

2 2

2 2

What does it mean if

f f
0?

x y

 
 

 
 f



Connecting the Laplacian and the 

Divergence of the Gradient Field:  

2 2

2 2

The Laplacian of f(x,y) is the divergence of the

gradient of f(x,y). There are three main notations 

f f
for this: f f

x y

 
     

 

2 2

2 2

f f
If f 0,  then the divergence of

x y

the gradient field of f(x,y) is 0. This means that

the gradient field has no sources or sinks, which

means the surface f(x,y) has no maxes or mins.

 
   

 



Connecting the Laplacian and the 

Divergence of the Gradient Field:  

2 2

2 2

Which surfaces could be z f(x,y) if

f f
we are given f 0?

x y



 
   

 


