Lesson 9

Change of Variables to Compute Double Integrals

Example 1: A Familiar Double Integral

Use a double integral to calculate the area of a circle of radius 4 centered at the origin:

```
\iint_{R} 1 \, dA
The region R is given by x^2 + y^2 = 16:
\int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} 1 \, dA
Now dA means "a small change in area" in
```

xy-coordinates. We can measure a small change

dy[′]

in area with a little rectangle.

$$\int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} 1 \, dy \, dx$$

 $^{-2}$

dA

Example 1: A Familiar Double Integral

This integral is actually pretty complicated to evaluate:

$$\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} 1 \, dy \, dx = \int_{-4}^{4} \left(2\sqrt{16-x^{2}} \right) dx$$
$$= \left[\sqrt{16-x^{2}} + 16 \sin^{-1} \left(\frac{x}{4} \right) \right]_{-4}^{4}$$
$$= 16\pi$$

What a mess! There must be a better way to use integration to do this...

What coordinate system would you prefer to use to when dealing with a region like R?

Example 2: An Attempt at a Change of Variables

Right! Let's try polar coordinates:

 $\begin{cases} x(r,t) = r\cos(t) \\ y(r,t) = r\sin(t) \end{cases} \begin{cases} r(x,y) = \sqrt{x^2 + y^2} \\ t(x,y) = tan^{-1}(y/x) \text{ (quadrant adjusted)} \end{cases}$

In this coordinate system, the region R is described quite elegantly with $0 \le r \le 4$ and $0 \le t \le 2\pi$. We will try to (naively) apply this to our double integral:

$$\iint_{R} \mathbf{1} \, \mathbf{dA} = \int_{0}^{2\pi} \int_{0}^{4} \mathbf{1} \, \mathbf{dr} \, \mathbf{dt}$$
$$= \int_{0}^{2\pi} \left[\mathbf{r} \right]_{0}^{4} \mathbf{dt}$$
$$= 8\pi$$

Oh no! 8π is not the right answer!! We wanted 16π ...

like the integral you'd take for a rectangle:

Detour: Working Out the Change of Variables the Right Way

Let's analyze the transformation $T(r, t) = (r \cos t, r \sin t)$ piece by piece and verify that the picture shown below makes sense:

Try the Mathematica applet I made to see how a small region in rt-space maps into xy-space:

Now we are ready to start thinking about how a small change in area on the rectangular region relates to a change in area on the circular region.

That is, consider the limit as ΔA , Δr , and Δt tend to 0:

$$T(r + \Delta r, t) - T(r, t) = \frac{T(r + \Delta r, t) - T(r, t)}{\Delta r} \Delta r$$

$$\approx \frac{\partial T}{\partial r} \Delta r$$

$$T(r, t + \Delta t) - T(r, t) = \frac{T(r, t + \Delta t) - T(r, t)}{\Delta t} \Delta t$$

These approximations using partial derivatives let us approximate our sector using a parallelogram:

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{r}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{r}} & \mathbf{0} \\ \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{t}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{t}} & \mathbf{0} \end{vmatrix} \Delta \mathbf{r} \Delta \mathbf{t} = \begin{vmatrix} \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{r}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{r}} \\ \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{t}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{t}} \end{vmatrix} \Delta \mathbf{r} \Delta \mathbf{t}$$

The Area Conversion Factor:

If we let Δr and Δt tend to zero, we can use this to get

$$\mathbf{dA} = \begin{vmatrix} \frac{\partial \mathbf{T}_1}{\partial \mathbf{r}} & \frac{\partial \mathbf{T}_2}{\partial \mathbf{r}} \\ \frac{\partial \mathbf{T}_1}{\partial \mathbf{T}_1} & \frac{\partial \mathbf{T}_2}{\partial \mathbf{t}} \end{vmatrix} \mathbf{drdt}$$

 $\begin{bmatrix} \frac{\partial T_1}{\partial r} & \frac{\partial T_2}{\partial r} \\ \frac{\partial T_1}{\partial t} & \frac{\partial T_2}{\partial t} \end{bmatrix}$ is called the <u>Jacobian matrix</u>, and $\begin{bmatrix} \frac{\partial T_1}{\partial r} & \frac{\partial T_2}{\partial r} \\ \frac{\partial T_1}{\partial t} & \frac{\partial T_2}{\partial t} \end{bmatrix}$ is called the <u>Jacobian determinant</u>.

 $\begin{bmatrix} \partial \mathbf{t} & \partial \mathbf{t} \end{bmatrix}$ You can let $A_{xy}(\mathbf{r}, \mathbf{t}) = \begin{vmatrix} \partial \mathbf{T}_1 & \partial \mathbf{T}_2 \\ \partial \mathbf{r} & \partial \mathbf{r} \\ \partial \mathbf{T}_1 & \partial \mathbf{T}_2 \\ \partial \mathbf{t} & \partial \mathbf{t} \end{vmatrix}$. Think of the Jacobian determinant as an

Area Conversion Factor that lets us compute an xy-space integral in rt-space:

Hence,
$$\iint_{R_{xy}} f(x,y) dA = \iint_{R_{rt}} f(x(r,t), y(r,t)) \left| A_{xy}(r,t) \right| dr dt$$

The Area Conversion Factor:

$$\iint_{R_{xy}} f(x,y) dA = \iint_{R_{rt}} f(x(r,t),y(r,t)) \left| A_{xy}(r,t) \right| dr dt$$

Let T(r,t) be a transformation from rt-space to xy-space. That is, T(r,t) = $(T_1(r,t), T_2(r,t)) = (x(r,t), y(r,t)).$

Then
$$A_{xy}(\mathbf{r}, \mathbf{t}) = \begin{vmatrix} \frac{\partial \mathbf{T}_1}{\partial \mathbf{r}} & \frac{\partial \mathbf{T}_2}{\partial \mathbf{r}} \\ \frac{\partial \mathbf{T}_1}{\partial \mathbf{t}} & \frac{\partial \mathbf{T}_2}{\partial \mathbf{t}} \end{vmatrix}$$
.

Note: Since we derived $A_{xy}(r, t)$ as the magnitude of a cross product, we need it to be positive. This is why we put absolute value bars into the formula above.

Example 3: Fixing Example 2

Remember we wanted $\iint 1 \, dA$ for a circle of radius 4 centered at (0,0). $T(r,t) = (x(r,t), y(r,t)) = (r\cos(t), r\sin(t))$ $\mathbf{A}_{xy}(\mathbf{r},\mathbf{t}) = \begin{vmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{r}} & \frac{\partial \mathbf{y}}{\partial \mathbf{r}} \\ \frac{\partial \mathbf{x}}{\partial \mathbf{t}} & \frac{\partial \mathbf{y}}{\partial \mathbf{t}} \end{vmatrix}$ $\iint_{R} \mathbf{1} \, \mathbf{dA} = \int_{0}^{2\pi} \int_{0}^{4} \mathbf{1} \, \mathbf{r} \, \mathbf{dr} \, \mathbf{dt}$ -2 $=\int_{0}^{2\pi}\left[\frac{\mathbf{r}^{2}}{2}\right]^{4} \mathbf{dt}$ $= \begin{vmatrix} \cos(t) & \sin(t) \\ -r\sin(t) & r\cos(t) \end{vmatrix}$ $= \int^{2\pi} 8 \, \mathrm{dt}$ $= r \cos^2(t) + r \sin^2(t)$ $= r(\cos^2(t) + \sin^2(t))$ =**16** π

Phew! We did it!

Created by Christopher Grattoni. All rights reserved.

= r

<u>Summary of Change of Variables for</u> <u>Polar Coordinates</u>

T(r,t) = (x(r,t), y(r,t)) = (r cos(t), r sin(t))

 $A_{xv}(r,t) = r$

$\iint_{R_{xy}} f(x,y) dA = \iint_{R_{rt}} f(x(r,t),y(r,t)) r dr dt$

Created by Christopher Grattoni. All rights reserved.

<u>Example 4: More With Polar</u> <u>Coordinates</u>

• By now you probably already asked yourself why this change of variables is useful. This was just a circle of course! We could have used $A = \pi r^2$ or the Gauss-Green formula.

 Hence, we should look at an example where a double integral in xy-coordinate space would be horribly messy, the boundary region is hard to parameterize for Gauss-Green, and we can't just plug into a familiar area formula...

<u>Example 4: More With Polar</u> <u>Coordinates</u>

Compute $\iint_{R} x^{2} + y^{2} dA$ for the region satisfying the following inequalities:

$$x^{2} + y^{2} \le 25, x^{2} + y^{2} \ge 4, y \ge 0$$

This would have been HORRIBLE in rectangular coordinates. But using polar coordinates, $x = r \cos(t)$ and $y = r \sin(t)$ this is the rt-rectangle with $0 \le t \le \pi$ and $2 \le r \le 5$:

$$\iint_{R} x^{2} + y^{2} dA = \int_{0}^{\pi} \int_{2}^{5} \left(\left(r \cos(t) \right)^{2} + \left(r \sin(t) \right)^{2} \right) \bullet r dr dt$$

$$= \int_{0}^{\pi} \int_{0}^{5} r^{3} dr dt$$

$$= \int_{0}^{\pi} \frac{609}{4} dt$$
Substitute $x = r \cos(t)$ and $y = r \sin(t)$

$$= \frac{609}{4} \pi$$
Created by Christopher Grattoni. All rights reserved.

Analogy Time:

This whole change of variables thing isn't just for polar coordinates. We can change from xy-space to any uv-coordinate space we want:

$$\iint_{R_{xy}} f(x,y) dA = \iint_{R_{uv}} f(x(u,v), y(u,v)) \left| A_{xy}(u,v) \right| du dv$$

This should be reminiscent of change of variables for single-variable calculus:

$$\int_{x(a)}^{x(b)} f(x) \, dx = \int_{a}^{b} f(x(u)) \, x'(u) \, du$$

So you can think of the Jacobian Determinant, $|A_{xy}(u, v)|$, as a higher-dimensional analogue of x'(u) in our old friend, u-substitution.

Let's try one in a single variable:

Example 5: Change of Variables for Single Variable Calculus

Х

ľ

6

2

Compute
$$\int_{e^2}^{e^6} \frac{\ln(x)}{x} dx.$$
$$= \int_{2}^{6} f(x(u)) x'(u) du$$
$$= \int_{2}^{6} f(e^u) e^u du$$
$$= \int_{2}^{6} \frac{u}{e^u} e^u du$$
$$= \left[\frac{u^2}{2}\right]_{2}^{6}$$
$$= \mathbf{16}$$

$$\int_{x(a)}^{x(b)} f(x) dx = \int_{a}^{b} f(x(u)) x'(u) du$$
$$f(x) = \frac{\ln(x)}{x}$$
$$x(u) = e^{u}$$
$$x'(u) = e^{u}$$
It works! This is the same as your more familiar method:
$$u = \ln(x)$$
$$du = 16$$
$$du = \frac{1}{2} dx$$

X

Note for the Literacy Sheet

A Note for the Literacy Sheet

We are using linearizations to approximate the area of the sector by creating a parallelogram. You will be responsible for explaining how this works on your literacy sheet. Make sure you read B.2 and B.3 in the Basics.

Example 6: Beyond Polar Coordinates

Compute $\iint_{R} y^2 dA$ for the region given by the ellipse Let's let x = 2ucos(v) and y = usin(v) for $0 \le v \le 2\pi$ and $0 \le u \le 1$. These are NOT polar coordinates, so we need to compute $A_{xy}(u, v)$:

$$A_{xy}(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2\cos(v) & \sin(v) \\ -2u\sin(v) & u\cos(v) \end{vmatrix}$$
$$= 2u\cos^{2}(v) + 2u\sin^{2}(v)$$
$$= 2u(\cos^{2}(v) + \sin^{2}(v))$$
$$= 2u(\cos^{2}(v) + \sin^{2}(v))$$

$$\left(\frac{x}{2}\right)^2 + y^2 = 1.$$

Example 6: Beyond Polar Coordinates

Compute
$$\iint_{\mathbb{R}} y^2 dA$$
 for the region given by the ellipse $\left(\frac{x}{2}\right)^2 + y^2 = 1$.

$$\iint_{\mathbb{R}} y^2 dA = \int_{0}^{2\pi} \int_{0}^{1} \left(u^2 \sin^2(v)\right) \cdot 2u \, du \, dv$$

$$= 2\int_{0}^{2\pi} \int_{0}^{1} u^3 \cdot \sin^2(v) \, du \, dv$$

$$= 2\int_{0}^{2\pi} \left[\frac{u^4}{4} \cdot \sin^2(v)\right]_{u=0}^{u=1} dv$$

$$= \frac{1}{2}\int_{0}^{2\pi} \sin^2(v) \, dv$$

$$= \frac{\pi}{2}$$

Example 7: Mathematica-Aided Change of Variables (Parallelogram Region)

Use Mathematica to compute $\iint_{A} e^{y} dA$ for R given by the parallelogram:

These lines are given by y = x + 1, y = x - 4,

$$y = -\frac{1}{4}x + \frac{13}{4}$$
, and $y = -\frac{1}{4}x + 6$.

We can rewrite them as 1 = y - x, -4 = y - x,

$$\frac{1}{4}x + y = \frac{13}{4}$$
, and $\frac{1}{4}x + y = 6$.

Then we can let u = y - x and $v = \frac{1}{4}x + y$ for $-4 \le u \le 1$ and $\frac{13}{4} \le v \le 6$!

But to compute our integral, we need the map from uv-space to xy-space...

That is, we have u(x, y) and v(x, y), but we need x(u, v) and y(u, v).

Let Mathematica do the work: Solve[$\{u = u[x, y], v = v[x, y]\}, \{x, y\}$]

$$x = -\frac{4}{5}(u - v)$$
 and $y = \frac{1}{5}(u + 4v)$

Example 7: Mathematica-Aided Change of Variables (Parallelogram Region)

$$x = -\frac{4}{5}(u - v)$$
 and $y = \frac{1}{5}(u + 4v)$

Example 7: Mathematica-Aided Change of Variables (Parallelogram Region)

Use Mathematica to compute $\iint e^y dA$ for R given by the parallelogram:

$$x(u, v) = -\frac{4}{5}(u - v)$$
 and $y(u, v) = \frac{1}{5}(u + 4v)$

$$A_{xy}(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{4}{5} & \frac{1}{5} \\ \frac{4}{5} & \frac{4}{5} \end{vmatrix} = -\frac{4}{5}$$

So we use $\frac{4}{5}$

<u>Example 7: Mathematica-Aided Change</u> of Variables (Parallelogram Region)

Use Mathematica to compute $\iint_{A} e^{y} dA$ for R given by the parallelogram:

$$|A_{xy}(u,v)| = \frac{4}{5}, x = -\frac{4}{5}(u-v), y = \frac{1}{5}(u+4v),$$

for $-4 \le u \le 1$ and $\frac{13}{4} \le v \le 6$:

$$\iint_{R} e^{y} dA = \int_{13/4}^{6} \int_{-4}^{1} e^{(u+4v)/5} \left(\frac{4}{5}\right) du dv$$

= 417.1 (from Mathematica)

An Important Connection

A parameterization (x(u,v),y(u,v)) for a region R_{xy} with a \leq u \leq b and c \leq v \leq d is actually a map between a uv-rectangle, R_{uv} , and your messy xy-region, R_{xv} :

Long story short:

A parameterization IS a change of coordinates.

If you can parameterize a region, you can (probably) integrate over it.