
Lesson 9 

Change of Variables to Compute 

Double Integrals 



Example 1: A Familiar Double Integral 

Use a double integral to calculate the area of a circle of radius 4 centered

at the origin:

2 2The region R is given by x y 16 : 
R

1 dA

2

2

4 16 x

4 16 x

1 dA


  

 

Now dA means "a small change in area" in 

xy-coordinates. We can measure a small change

in area with a little rectangle.

2

2

4 16 x

4 16 x

1 dy dx


  

 
So dA = dy dx:

dA

dx

dy
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Example 1: A Familiar Double Integral 

This integral is actually pretty complicated to evaluate:
2

2

4 16 x

4 16 x

1 dy dx


  

   
4

2

4

2 16 x dx


 
4

2 1

4

x
16 x 16sin

4





  
    

  

16 

What a mess! There must be a better way to 

use integration to do this...

What coordinate system would you prefer to

use to when dealing with a region like R?
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Example 2: An Attempt at a Change of 

Variables 

Right! Let's try polar coordinates:

In this coordinate system, the region R is 

described quite elegantly with 0 r 4

and 0 t 2 . We will try to (naively) apply

this to our double integral:

 

  

2 4

0 0

d t1 r d


  
R

1 dA
2

4

0
0

dtr


   

x(r, t) r cos(t)

y(r, t) r sin(t)

 


  

2 2

1

r(x,y) x y

t(x,y) tan y x (quadrant adjusted)

  




8 

Oh no! 8 is not the right answer!! We wanted 16 ... 



Detour: Working Out the Change of 

Variables the Right Way 

Our misconception was that dA . Our dA refers to a small change

in xy-area, not rt-area. We need to delve a bit deeper to sort this 

dr dt

out:



2

2

4 16 x 2 4

4 0 016 x

For 1 dy dx our region was a circle, while 1 looks more 

like the integral you'd take for a rectangle:

dr dt
 

  

   

x(r,t) r cos(t)

y(r ,t) r sin(t)






 

2 2

1

r(x,y) x y

t(x,y) tan y x

 



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Detour: Working Out the Change of 

Variables the Right Way 

 Let's analyze the transformation T(r, t) rcost,r sint piece by piece 

and verify that the picture shown below makes sense:







   



x(4,t) 4cos t

y(4,t) 4sint

For the blue line, 

r 4, 0 t 2 :
 

 

   



x(r ,2 ) r

y(r ,2 ) 0

For the green line, 

t 2 , 0 r 4 :




  



x(r ,0) r

y(r ,0) 0

For the orange line, 

t 0, 0 r 4 :Let's map a few points 

just for practice:

This whole process can be called a mapping, a transformation, 

a change of variables,  or a change of coordinates.

x(0,t) 0

y(0,t) 0

For the red line, 

r 0, 0 t 2 :




   


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Detour: Working Out the Change of 

Variables the Right Way 

Try the Mathematica applet I made to see how a small region

in rt-space maps into xy-space:

Now we are ready to start thinking about how a small change in area on

the rectangular region relates to a change in area on the circular region.

rt-rectangles map into 

xy-sectors. Notice that 

this size of the sectors

varies while the size of 

the rectangles doesn't...

This is called a non-area-preserving map.
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Detour: Working Out the Change of 

Variables the Right Way 

(r, t)

Now imagine a very small rectangle in the rt-plane:

(r r,t) 

(r r,t t)   (r,t t) 

T(r,t)
T(r r,t) 

T(r r,t t)   

T(r,t t) 

That is, consider the limit as A, r, and t tend to 0:  

T(r r,t) T(r,t)
T(r r,t) T(r,t) r

r

  
    


T(r,t t) T(r,t)

T(r,t t) T(r,t) t
t

  
    



These approximations using partial derivatives let us approximate

our sector using a parallelogram:

T
r

r


 


T
t

t


 

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Detour: Working Out the Change of 

Variables the Right Way 

(r, t)

Now imagine a very small rectangle in the rt-plane:

(r r,t) 

(r r,t t)   (r,t t) 

T(r,t)

T(r r,t) 

T(r r,t t)   

T(r,t t) 

T
r

r






T
t

t






Theorem: The area of the parallelogram formed by two

vectors V and W equals V W .

T
r

T
tA

tr
  







 T

t

T
tr

r

 


 



(We can take a scalar out of 

either vector in a cross product)

1 2

1 2

i

T T
r

r r

j

t

T T

t t

k

0

0





 


 





 

2

1 2

1

t
T T

t

T T

r r r

t


 



 







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The Area Conversion Factor: 

1 2

1 2

If we let  and  tend to zero, we can usr

T T

r

e tt

dt
T T

t

r d

his t

t

et

d r

o g

A



 

 

 

 



xy rt

xy

R R

Hence, f(x,y)dA f(x(r,t),y(r,t)) A (r,t) dr dt 

1 2

1 1

1 2

2 2

 is called the Jacobian matrix, and  is called the Jacobian determi

T T T T

T T T T

t t t t

r r n .r ar nt

   



   

 

 
 
 





 




  



x

1 2

1 2

y
You can let A (r, t) . Think of the Jacobian determinant as an 

Area Conversion Factor that lets us compute an xy-space integ

T

r

T

r r

al in rt-spa

t

:

T

t

c

T

e




 

 



 
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The Area Conversion Factor: 

xy rt

xy

R R

f(x,y)dA f(x(r,t),y(r,t)) A (r,t) dr dt 

 1 2

xy

1

1 2

2

Let T(r, t) be a transformation from rt-space to xy-space.

That is, T(r,t) T (r, t),T (r, t) (x(r, t), y(r, t)).

Then A

T T

r(r, t
T

t t

) .
T

r

 

 





 







xy
Note: Since we derived A (r,t) as the magnitude of a cross product, we need

it to be positive. This is why we put absolute value bars into the formula above.



Example 3: Fixing Example 2 

R

Remember we wanted 1 dA for a circle of radius 4 centered at (0,0).

2 4

0 0

r d t1 r d


  
R

1 dA

4
2 2

0 0

r
dt

2

  
  

 


2

0

8 dt


 

T(r,t) (x(r,t),y(r,t)) (rcos(t),rsin(t)) 

xy

yx

r rA (r, t)
yx

t t



 




 

cos(t) sin(t)

r sin(t) r cos(t)



2 2rcos (t) rsin (t) 

r

 2 2r cos (t) sin (t) 
16 

Phew! We did it!
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Summary of Change of Variables for 

Polar Coordinates 

T(r,t) (x(r,t),y(r,t)) (rcos(t),rsin(t)) 

xy
A (r,t) r

xy rt
R R

f(x,y)dA f(x(r,t),y(r,t)) r dr dt 
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• By now you probably already asked yourself why 

this change of variables is useful. This was just a 

circle of course! We could have used A = πr2 or 

the Gauss-Green formula.  

 

• Hence, we should look at an example where a 

double integral in xy-coordinate space would be 

horribly messy, the boundary region is hard to 

parameterize for Gauss-Green, and we can’t just 

plug into a familiar area formula… 

Example 4: More With Polar 

Coordinates  
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This would have been HORRIBLE in rectangular coordinates.

But using polar coordinates, and  this 

is the rt-rectangle w

x rcos(t) y r sin(t)

ith 0 t and 2 r 5 :    

 

Example 4: More With Polar 

Coordinates 

2 2

R

2 2 2 2

Compute x y dA for the region satisfying the following inequalities: 

x y 25, x y 4,y 0



    



    
5

2 2

0 2

r cos(t) r sin(t) r dr dt


   2 2

R

x y dA
5

3

0 2

r dr dt


  

0

609
dt

4



 

609

4
 

Substitute x rcos(t) and y rsin(t) 
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Analogy Time: 

xy uv

xy

R R

f(x,y)dA f(x(u,v),y(u,v)) A (u,v) du dv 

This should be reminiscent of change of variables for single-variable calculus:

This whole change of variables thing isn't just for polar coordinates.

We can change from xy-space to any uv-coordinate space we want:

x(b) b

x(a) a

f(x) dx f(x(u)) x'(u) du 

xy
So you can think of the Jacobian Determinant, A (u,v) , as a 

higher-dimensional analogue of x'(u) in our old friend, u-substitution.

Let's try one in a single variable:
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Example 5: Change of Variables for 

Single Variable Calculus 

x(b) b

x(a) a

f(x) dx f(x(u)) x'(u) du 

6

2

e

e

ln(x)
Compute dx.

x

u

u

ln(x)
f(x)

x

x(u) e

x'(u) e







6

2

f(x(u)) x'(u) du 

6

u u

2

f(e ) e du 
6

u

u
2

u
e du

e
 

6
2

2

u

2

 
  
 

16

It works! This is the same as 

your more familiar method:

u ln(x)

1
du dx

x





6

2

u du 16
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Note for the Literacy Sheet 

(u,v)

Now imagine a very small rectangle in the uv-plane:

(u u,v) 

(u u,v v)   (u,v v) 

(a,b)

T(u u,v) 

T(u u,v v)   

T(u,v v) 

T
(u a)

u






T
(v b)

v






Theorem: The area of the parallelogram formed by two

vectors V and W equals V W .

T
u

T
vA

vu
  







 T

v

T
vu

u

 


 



(We can take a scalar out of 

either vector in a cross product)

1 2

1 2

i

T T
u

u u

j

v

T T

v v

k

0

0





 


 





 

2

1 2

1

v
T T

v

T T

u u u

v


 



 










A Note for the Literacy Sheet 

(u,v)

Now imagine a very small rectangle in the uv-plane:

(u u,v) 

(u u,v v)   (u,v v) 

(a,b)

T(u u,v) 

T(u u,v v)   

T(u,v v) 

T
(u a)

u






T
(v b)

v






We are using linearizations to approximate the

area of the sector by creating a parallelogram. 

You will be responsible for explaining how this 

works on your literacy sheet. Make sure you read 

B.2 and B.3 in the Basics.



   

 



xy

Let's let and for 0 v 2 and

0 u 1. These are NOT polar coordinates, so we need

to com

x 2ucos(v

pute A

y usin(v))

(u,v) :

Example 6: Beyond Polar Coordinates 

2

2 2

R

x
Compute y dA for the region given by the ellipse y 1.

2

 
  

 




 




 

xy

u

x

x

uA (u,

y

v

v

y
)

v

2cos(v) sin(v)

2usin(v) ucos(v)



2 22ucos (v) 2usin (v) 

 2u
 2 22u cos (v) sin (v) 
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   

 



xy

Let's let and for 0 v 2 and

0 u 1. These are NOT polar coordinates, so we need

to com

x 2ucos(v

pute A

y usin(v))

(u,v) :

Example 6: Beyond Polar Coordinates 

2

2 2

R

x
Compute y dA for the region given by the ellipse y 1.

2

 
  

 


xy

yx

u uA (u,v)
yx

v v



 




 

2cos(v) sin(v)

2usin(v) ucos(v)



2 22ucos (v) 2usin (v) 

 2u
 2 22u cos (v) sin (v) 
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  
   

 



 

If , then

x x
, x gradx[u,v].

u

x(u,v) 2u

v

cos(v)

  
   





 

If , then

y y
,

y(

y

u,v) usin(v)

grady[u,v].
u v

So you can think of the area conversion

factor as a determinant of a pair of 

gradient vectors from x(u,v) and y(u,v).

In general, you will start to notice that a

change of variables can often be  found 

by parameterizing your curve/surface/etc.



Example 6: Beyond Polar Coordinates 

2

2 2

R

x
Compute y dA for the region given by the ellipse y 1.

2

 
  

 


 


  
2 2

2 1

0 0

2uu sin (v d) u dv2

R

y dA

2 1

3 2

0 0

2 u sin (v) du dv


  
u 12 4

2

0 u 0

u
2 sin (v) dv

4






 
  

 






x 2ucosSubstitute

a y usinn

v)

d

(

(v).

2

2

0

1
sin (v)dv

2



 

2



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Example 7: Mathematica-Aided Change 

of Variables (Parallelogram Region) 

y

R

Use Mathematica to compute e dA for R given by the parallelogram:

These lines are given by ,

1 13 1
y x y x 6

4 4 4

,

,and .

y x 1 y x 4

    

 



 

1 yWe xcan rewrite them as ,

1 13 1
x y x y 6

,

,and .

x

4 4

4 y

4

  

   

 

But to compute our integral, we need the map from uv-space to xy-space...

v(x,yThat is, we have and , but we need u(x,y) x(u,v) y(ua d) n ,v).

Solve[Let Mathematica { [ , ], [ , ]},{ , }]do the work:  u u x y v v x y x y

1
T

13
v x y v 6

4
hen we can let and for andy 4 !u u 1

4
x     

and
1

y
4

x (u 4v) )(u
5 5

v    
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Example 7: Mathematica-Aided Change 

of Variables (Parallelogram Region) 

y

R

Use Mathematica to compute e dA for R given by the parallelogram:

These lines are given by ,

1 13 1
y x y x 6

4 4 4

,

,and .

y x 1 y x 4

    

 



 

1 yWe xcan rewrite them as ,

1 13 1
x y x y 6

,

,and .

x

4 4

4 y

4

  

   

 

But to compute our integral, we need the map from uv-space to xy-space...

v(x,yThat is, we have and , but we need u(x,y) x(u,v) y(ua d) n ,v).

Solve[Let Mathematica { [ , ], [ , ]},{ , }]do the work:  u u x y v v x y x y

1
T

13
v x y v 6

4
hen we can let and for andy 4 !u u 1

4
x     

and
1

y
4

x (u 4v) )(u
5 5

v    

What is this Mathematica command doing?

What will YOU do on a quiz/test without 

Mathematica?



Example 7: Mathematica-Aided Change 

of Variables (Parallelogram Region) 

y

R

Use Mathematica to compute e dA for R given by the parallelogram:

and
1

y(
4

x(u,v) u,v)(u v (u 4v)
5 5

)   

xy

yx

u uA (u,v)
yx

v v



 




 

4 1

5 5

4 4

5 5




4

5
 

So we use
4

5
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Example 7: Mathematica-Aided Change 

of Variables (Parallelogram Region) 

y

R

Use Mathematica to compute e dA for R given by the parallelogram:

and
1

y(
4

x(u,v) u,v)(u v (u 4v)
5 5

)   

xy

yx

u uA (u,v)
yx

v v



 




 

4 1

5 5

4 4

5 5




4

5
 

So we use
4

5
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 

  
   

  

If , then

x x
, x gradx[u,v].

u

4
x(u,v) )

v

(u v
5



  
   

  

If , then

y y
, y grady[u,v].

u

1

v

y(u,v) (u 4v)
5

So you can think of the area conversion

factor as a determinant of a pair of 

gradient vectors from x(u,v) and y(u,v).

Again,  you can see that our change 

of variables is found by parameterizing

our region (in this case, a parallelogram).



Example 7: Mathematica-Aided Change 

of Variables (Parallelogram Region) 

y

R

Use Mathematica to compute e dA for R given by the parallelogram:

xy

1
y (

4
A (u,v) , , ,

5

for an

u 4v)
5

13
v 6d :

4
x (u

4

v)
5

4 u 1

 



 

   



y

R

e dA
6 1

(u 4v)/5

13/4 4

4
du dv

5
e 



 
 
 

  

417.1 (from Mathematica)
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An Important Connection 

xy

uv xy

A parameterization (x(u,v),y(u,v)) for a region R with a u b and c v d

isactually a map between a uv-rectangle, R , and your messy xy-region, R :

   

A parameterization IS a change of coordinates.
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(x(u,v),y(u,v))

uv
R

(uv-rectangle)

xy
R

If you can parameterize a region, you can (probably) integrate over it.

Long story short:


